Distributed Machine Learning over Directed Network with Fixed Communication Delays

Guo Zhenning
{"title":"Distributed Machine Learning over Directed Network with Fixed Communication Delays","authors":"Guo Zhenning","doi":"10.1145/3318299.3318340","DOIUrl":null,"url":null,"abstract":"In this paper, we present a distributed machine learning algorithm over a network with fixed-delay tolerance. The network is directed and strongly connected. The training dataset is distributed to all agents in the network. We combine the distributed convex optimization (which utilizes double linear iterations) and corresponding machine learning algorithm. Each agent can only access its own local dataset. Suppose the delay between any pair of agents is time-invariant. The simulation shows that our algorithm is able to work under delayed transmission, in the sense that over time at each agent t the ratio of the estimate value xi(t) and scaling variable yi(t) can converge to the optimal point of the global cost function corresponding to the machine learning problem.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a distributed machine learning algorithm over a network with fixed-delay tolerance. The network is directed and strongly connected. The training dataset is distributed to all agents in the network. We combine the distributed convex optimization (which utilizes double linear iterations) and corresponding machine learning algorithm. Each agent can only access its own local dataset. Suppose the delay between any pair of agents is time-invariant. The simulation shows that our algorithm is able to work under delayed transmission, in the sense that over time at each agent t the ratio of the estimate value xi(t) and scaling variable yi(t) can converge to the optimal point of the global cost function corresponding to the machine learning problem.
具有固定通信延迟的定向网络上的分布式机器学习
在本文中,我们提出了一种基于固定延迟容忍网络的分布式机器学习算法。网络是定向的,紧密相连的。训练数据集被分发给网络中的所有代理。我们将分布式凸优化(利用双线性迭代)和相应的机器学习算法相结合。每个代理只能访问自己的本地数据集。假设任意一对智能体之间的延迟是定常的。仿真表明,我们的算法能够在延迟传输下工作,即随着时间的推移,在每个代理t处,估估值xi(t)与缩放变量yi(t)的比值可以收敛到机器学习问题对应的全局代价函数的最优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信