An Optimization Strategy for Evolutionary Testing Based on Cataclysm

M. Wang, Bixin Li, Zhengshan Wang, Xiaoyuan Xie
{"title":"An Optimization Strategy for Evolutionary Testing Based on Cataclysm","authors":"M. Wang, Bixin Li, Zhengshan Wang, Xiaoyuan Xie","doi":"10.1109/COMPSACW.2010.69","DOIUrl":null,"url":null,"abstract":"Evolutionary Testing (ET) is an effective test case generation technique which uses some meta-heuristic search algorithm, especially genetic algorithm, to generate test cases automatically. However, the prematurity of the population may decrease the performance of ET. To solve this problem, this paper presents a novel optimization strategy based on cataclysm. It monitors the diversity of population during the evolution process of ET. Once the prematurity is detected, it will use the operator, cataclysm, to recover the diversity of the population. The experimental results show that the proposed strategy can improve the performance of ET evidently.","PeriodicalId":121135,"journal":{"name":"2010 IEEE 34th Annual Computer Software and Applications Conference Workshops","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 34th Annual Computer Software and Applications Conference Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSACW.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Evolutionary Testing (ET) is an effective test case generation technique which uses some meta-heuristic search algorithm, especially genetic algorithm, to generate test cases automatically. However, the prematurity of the population may decrease the performance of ET. To solve this problem, this paper presents a novel optimization strategy based on cataclysm. It monitors the diversity of population during the evolution process of ET. Once the prematurity is detected, it will use the operator, cataclysm, to recover the diversity of the population. The experimental results show that the proposed strategy can improve the performance of ET evidently.
基于大灾变的进化测试优化策略
进化测试是一种有效的测试用例生成技术,它使用一些元启发式搜索算法,特别是遗传算法来自动生成测试用例。然而,群体的早熟可能会降低ET的性能。为了解决这一问题,本文提出了一种基于突变的优化策略。它在ET进化过程中监测种群的多样性,一旦检测到早熟,它将使用突变算子来恢复种群的多样性。实验结果表明,该策略能明显提高ET的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信