Modeling of Ammonium and COD Adsorption in Aqueous Solutions Using an Artificial Neural Network

A. Khalil, A. Smolyanichenko, E. Vilson, E. Shchutskaya, E. Tsurikova
{"title":"Modeling of Ammonium and COD Adsorption in Aqueous Solutions Using an Artificial Neural Network","authors":"A. Khalil, A. Smolyanichenko, E. Vilson, E. Shchutskaya, E. Tsurikova","doi":"10.2991/ISEES-19.2019.42","DOIUrl":null,"url":null,"abstract":"This paper illustrates the application of the artificial neural network for adsorption of ammonium NH4 and COD from fish farm by rice straw as low cost carbonaceous. The effects of input parameters (contact time, pH, initial concentration of NH4 and COD, adsorbent dosages, and temperature) are studied to optimize the conditions for maximum removal of NH4 and COD. The artificial neural network with a single hidden layer with ten nodes trained with Levenberg-Marquardt algorithm predicted the removal efficiency of NH4 and COD from aqueous solution accurately.","PeriodicalId":103378,"journal":{"name":"Proceedings of the International Symposium \"Engineering and Earth Sciences: Applied and Fundamental Research\" dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium \"Engineering and Earth Sciences: Applied and Fundamental Research\" dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ISEES-19.2019.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper illustrates the application of the artificial neural network for adsorption of ammonium NH4 and COD from fish farm by rice straw as low cost carbonaceous. The effects of input parameters (contact time, pH, initial concentration of NH4 and COD, adsorbent dosages, and temperature) are studied to optimize the conditions for maximum removal of NH4 and COD. The artificial neural network with a single hidden layer with ten nodes trained with Levenberg-Marquardt algorithm predicted the removal efficiency of NH4 and COD from aqueous solution accurately.
基于人工神经网络的氨氮和COD在水溶液中的吸附模拟
本文介绍了人工神经网络在稻秆低成本吸附养鱼场氨氮和COD中的应用。研究了输入参数(接触时间、pH、初始NH4和COD浓度、吸附剂投加量和温度)的影响,优化了最大去除NH4和COD的条件。采用Levenberg-Marquardt算法训练的单隐层10节点人工神经网络准确预测了水溶液中NH4和COD的去除效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信