Vladimir Duffal, Benoît de Laage de Meux, R. Manceau
{"title":"Development and Validation of a Hybrid RANS-LES Approach Based on Temporal Filtering","authors":"Vladimir Duffal, Benoît de Laage de Meux, R. Manceau","doi":"10.1115/ajkfluids2019-4937","DOIUrl":null,"url":null,"abstract":"\n To address the challenge of controlling the energy partition in hybrid RANS-LES methods, the use of a consistent operator based on temporal filtering is desirable. This formalism leads to the development of a consistent continuous hybrid RANS-LES approach called Hybrid Temporal LES (HTLES). In this paper, an upgraded version of HTLES is presented, focusing on improving the model for wall-bounded flows. Notably, a shielding function is integrated in the model to impose the RANS behavior in the near-wall regions. The calibration and validation of the hybrid method applied to the standard k-ω-SST model is then carried out on several test cases: decaying isotropic turbulence, channel flow and periodic-hill flow. The new version of the model fulfills the specifications: the correct subfilter dissipation; the correct migration from RANS to LES in the boundary layer; the robustness of the results to grid coarsening; the accuracy of the predictions at a reasonable computational cost.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
To address the challenge of controlling the energy partition in hybrid RANS-LES methods, the use of a consistent operator based on temporal filtering is desirable. This formalism leads to the development of a consistent continuous hybrid RANS-LES approach called Hybrid Temporal LES (HTLES). In this paper, an upgraded version of HTLES is presented, focusing on improving the model for wall-bounded flows. Notably, a shielding function is integrated in the model to impose the RANS behavior in the near-wall regions. The calibration and validation of the hybrid method applied to the standard k-ω-SST model is then carried out on several test cases: decaying isotropic turbulence, channel flow and periodic-hill flow. The new version of the model fulfills the specifications: the correct subfilter dissipation; the correct migration from RANS to LES in the boundary layer; the robustness of the results to grid coarsening; the accuracy of the predictions at a reasonable computational cost.