The Time Dimension in Predicting Failures: A Case Study

Ivano Irrera, C. Pereira, M. Vieira
{"title":"The Time Dimension in Predicting Failures: A Case Study","authors":"Ivano Irrera, C. Pereira, M. Vieira","doi":"10.1109/LADC.2013.25","DOIUrl":null,"url":null,"abstract":"Online Failure Prediction is a cutting-edge technique for improving the dependability of software systems. It makes extensive use of machine learning techniques applied to variables monitored from the system at regular intervals of time (e.g. mutexes/s, paged bytes/s, etc.). The goal of this work is to assess the impact of considering the time dimension in failure prediction, through the use of sliding windows. The state-of-the-art SVM (Support Vector Machine) classifier is used to support the study, predicting failure events occurring in a Windows XP machine. An extensive comparative analysis is carried out, in particular using a software fault injection technique to speed up the failure data generation process.","PeriodicalId":243515,"journal":{"name":"2013 Sixth Latin-American Symposium on Dependable Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth Latin-American Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LADC.2013.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Online Failure Prediction is a cutting-edge technique for improving the dependability of software systems. It makes extensive use of machine learning techniques applied to variables monitored from the system at regular intervals of time (e.g. mutexes/s, paged bytes/s, etc.). The goal of this work is to assess the impact of considering the time dimension in failure prediction, through the use of sliding windows. The state-of-the-art SVM (Support Vector Machine) classifier is used to support the study, predicting failure events occurring in a Windows XP machine. An extensive comparative analysis is carried out, in particular using a software fault injection technique to speed up the failure data generation process.
故障预测的时间维度:一个案例研究
在线故障预测是提高软件系统可靠性的前沿技术。它广泛使用机器学习技术,应用于系统定期监控的变量(例如互斥锁/秒,分页字节/秒等)。这项工作的目的是通过使用滑动窗口来评估考虑时间维度在故障预测中的影响。使用最先进的SVM(支持向量机)分类器来支持研究,预测Windows XP机器中发生的故障事件。进行了广泛的比较分析,特别是使用软件故障注入技术来加快故障数据的生成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信