A Hybrid CPU-GPU Local Search Heuristic for the Unrelated Parallel Machine Scheduling Problem

I. M. Coelho, Matheus Nohra Haddad, L. S. Ochi, M. Souza, R. Farias
{"title":"A Hybrid CPU-GPU Local Search Heuristic for the Unrelated Parallel Machine Scheduling Problem","authors":"I. M. Coelho, Matheus Nohra Haddad, L. S. Ochi, M. Souza, R. Farias","doi":"10.1109/WAMCA.2012.16","DOIUrl":null,"url":null,"abstract":"This work addresses the development of a hybrid CPU-GPU local search heuristic for the unrelated parallel machine scheduling problem. In this scheduling problem setup times are sequence-dependent and also machine-dependent. The objective is to minimize the maximum completion time of the schedule, known as make span. Since the problem belongs to the NP-hard class there is no known polynomial time algorithm to solve it, so metaheuristics and local search heuristics are usually developed to find good near optimal solutions. In general, the local search is the most expensive part of the heuristic method, so our algorithm harnesses the tremendous computing power of the GPU to decrease the local search computational time. We use the local search based on swapping jobs in different machines, since it is able find good near optimal solutions as we report from previous results in literature. We show that the hybrid CPU-GPU local search achieves average speedups from 10 to 27 times in relation to the pure CPU local search.","PeriodicalId":288438,"journal":{"name":"2012 Third Workshop on Applications for Multi-Core Architecture","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Workshop on Applications for Multi-Core Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAMCA.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work addresses the development of a hybrid CPU-GPU local search heuristic for the unrelated parallel machine scheduling problem. In this scheduling problem setup times are sequence-dependent and also machine-dependent. The objective is to minimize the maximum completion time of the schedule, known as make span. Since the problem belongs to the NP-hard class there is no known polynomial time algorithm to solve it, so metaheuristics and local search heuristics are usually developed to find good near optimal solutions. In general, the local search is the most expensive part of the heuristic method, so our algorithm harnesses the tremendous computing power of the GPU to decrease the local search computational time. We use the local search based on swapping jobs in different machines, since it is able find good near optimal solutions as we report from previous results in literature. We show that the hybrid CPU-GPU local search achieves average speedups from 10 to 27 times in relation to the pure CPU local search.
非相关并行机调度问题的一种CPU-GPU混合局部搜索启发式算法
本研究针对不相关的并行机器调度问题,开发了一种CPU-GPU混合局部搜索启发式算法。在这个调度问题中,设置时间依赖于序列,也依赖于机器。目标是最小化计划的最大完成时间,称为制造跨度。由于问题属于NP-hard类,没有已知的多项式时间算法来解决它,因此通常采用元启发式和局部搜索启发式来寻找良好的近最优解。一般来说,局部搜索是启发式算法中开销最大的部分,因此我们的算法利用GPU巨大的计算能力来减少局部搜索的计算时间。我们使用基于在不同机器上交换作业的局部搜索,因为它能够找到良好的接近最优解,正如我们从以前的文献中报告的那样。我们表明,与纯CPU本地搜索相比,混合CPU- gpu本地搜索实现了10到27倍的平均速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信