{"title":"Soft error resilient QR factorization for hybrid system with GPGPU","authors":"Peng Du, P. Luszczek, S. Tomov, J. Dongarra","doi":"10.1145/2133173.2133179","DOIUrl":null,"url":null,"abstract":"The general purpose graphics processing units (GPGPU) are increasingly deployed for scientific computing due to their performance advantages over CPUs. As a result, fault tolerance has become a more serious concern compared to the period when GPGPUs were used exclusively for graphics applications. Using GPUs and CPUs together in a hybrid computing system increases flexibility and performance but also increases the possibility of the computations being affected by soft errors. In this work, we propose a soft error resilient algorithm for QR factorization on such hybrid systems. Our contributions include (1) a checkpointing and recovery mechanism for the left-factor Q whose performance is scalable on hybrid systems; (2) optimized Givens rotation utilities on GPGPUs to efficiently reduce an upper Hessenberg matrix to an upper triangular form for the protection of the right factor R, and (3) a recovery algorithm based on QR update on GPGPUs. Experimental results show that our fault tolerant QR factorization can success- fully detect and recover from soft errors in the entire matrix with little overhead on hybrid systems with GPGPUs.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133173.2133179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
The general purpose graphics processing units (GPGPU) are increasingly deployed for scientific computing due to their performance advantages over CPUs. As a result, fault tolerance has become a more serious concern compared to the period when GPGPUs were used exclusively for graphics applications. Using GPUs and CPUs together in a hybrid computing system increases flexibility and performance but also increases the possibility of the computations being affected by soft errors. In this work, we propose a soft error resilient algorithm for QR factorization on such hybrid systems. Our contributions include (1) a checkpointing and recovery mechanism for the left-factor Q whose performance is scalable on hybrid systems; (2) optimized Givens rotation utilities on GPGPUs to efficiently reduce an upper Hessenberg matrix to an upper triangular form for the protection of the right factor R, and (3) a recovery algorithm based on QR update on GPGPUs. Experimental results show that our fault tolerant QR factorization can success- fully detect and recover from soft errors in the entire matrix with little overhead on hybrid systems with GPGPUs.