{"title":"The Golden Code is Fast Decodable","authors":"Mohanned O. Sinnokrot, J. Barry","doi":"10.1109/GLOCOM.2008.ECP.700","DOIUrl":null,"url":null,"abstract":"The golden code is a full-rate full-diversity space-time code for two transmit antennas that has a maximal coding gain. Because each codeword conveys four information symbols from an M-ary QAM alphabet, a maximum-likelihood decoder based on a conventional sphere detector has a worst-case complexity of M4. In this paper we present a new algorithm for maximum-likelihood decoding of the golden code that has a worst-case complexity of only 2M3. We thus prove that the golden code is fast decodable, a fact that has evidently been overlooked in prior work. Furthermore, in contrast to the overlaid Alamouti codes, which are fast decodable on quasistatic channels but not on time-varying channels, the golden code is fast decodable on both quasistatic and rapid time-varying channels.","PeriodicalId":297815,"journal":{"name":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2008.ECP.700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The golden code is a full-rate full-diversity space-time code for two transmit antennas that has a maximal coding gain. Because each codeword conveys four information symbols from an M-ary QAM alphabet, a maximum-likelihood decoder based on a conventional sphere detector has a worst-case complexity of M4. In this paper we present a new algorithm for maximum-likelihood decoding of the golden code that has a worst-case complexity of only 2M3. We thus prove that the golden code is fast decodable, a fact that has evidently been overlooked in prior work. Furthermore, in contrast to the overlaid Alamouti codes, which are fast decodable on quasistatic channels but not on time-varying channels, the golden code is fast decodable on both quasistatic and rapid time-varying channels.