{"title":"Fingerprint Spoof Detection: Temporal Analysis of Image Sequence","authors":"T. Chugh, Anil K. Jain","doi":"10.1109/IJCB48548.2020.9304921","DOIUrl":null,"url":null,"abstract":"We utilize the dynamics involved in the imaging of a fingerprint on a touch-based fingerprint reader, such as perspiration, changes in skin color (blanching), and skin distortion, to differentiate real fingers from spoof (fake) fingers. Specifically, we utilize a deep learning-based architecture (CNN-LSTM) trained end-to-end using sequences of minutiae-centered local patches extracted from ten color frames captured on a COTS fingerprint reader. A time-distributed CNN (MobileNet-v1) extracts spatial features from each local patch, while a bi-directional LSTM layer learns the temporal relationship between the patches in the sequence. Experimental results on a database of 26, 650 live frames from 685 subjects (1,333 unique fingers), and 32,910 spoof frames of 7 spoof materials (with a total of 14 material variants), show that the proposed approach exceeds the state-of-the-art performance in both known-material and cross-material (generalization) scenarios. For instance, the proposed approach improves the state-of-the-art cross-material performance from TDR of 81.65% to 86.20% @ FDR = 0.2%.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We utilize the dynamics involved in the imaging of a fingerprint on a touch-based fingerprint reader, such as perspiration, changes in skin color (blanching), and skin distortion, to differentiate real fingers from spoof (fake) fingers. Specifically, we utilize a deep learning-based architecture (CNN-LSTM) trained end-to-end using sequences of minutiae-centered local patches extracted from ten color frames captured on a COTS fingerprint reader. A time-distributed CNN (MobileNet-v1) extracts spatial features from each local patch, while a bi-directional LSTM layer learns the temporal relationship between the patches in the sequence. Experimental results on a database of 26, 650 live frames from 685 subjects (1,333 unique fingers), and 32,910 spoof frames of 7 spoof materials (with a total of 14 material variants), show that the proposed approach exceeds the state-of-the-art performance in both known-material and cross-material (generalization) scenarios. For instance, the proposed approach improves the state-of-the-art cross-material performance from TDR of 81.65% to 86.20% @ FDR = 0.2%.