An entity relation extraction method based on the fusion of contextual information

Xiangyang Nie, Zunwang Ke, Wushur Slam
{"title":"An entity relation extraction method based on the fusion of contextual information","authors":"Xiangyang Nie, Zunwang Ke, Wushur Slam","doi":"10.1145/3603781.3603909","DOIUrl":null,"url":null,"abstract":"With the growth of information technology, numerous entity relation extraction methods have developed. However, current studies primarily emphasize effective entity recognition, disregarding the significance of local information about entities in text on relation extraction and only acknowledging the presence of a singular relationship. To address this, a proposed entity relation extraction method based on the fusion of contextual information integrates Bi-RNN to further extract sentence vectors encoded by BERT.The model combining local information about entities with context, facilitating multi-relation classification through a biaffine classifier. Additionally, the model reduces the dimensionality of fused information to capture more effective information. Negative sampling is also introduced to enhance generalization capabilities. The model outperforms existing works in multiple public datasets.","PeriodicalId":391180,"journal":{"name":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603781.3603909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growth of information technology, numerous entity relation extraction methods have developed. However, current studies primarily emphasize effective entity recognition, disregarding the significance of local information about entities in text on relation extraction and only acknowledging the presence of a singular relationship. To address this, a proposed entity relation extraction method based on the fusion of contextual information integrates Bi-RNN to further extract sentence vectors encoded by BERT.The model combining local information about entities with context, facilitating multi-relation classification through a biaffine classifier. Additionally, the model reduces the dimensionality of fused information to capture more effective information. Negative sampling is also introduced to enhance generalization capabilities. The model outperforms existing works in multiple public datasets.
一种基于上下文信息融合的实体关系提取方法
随着信息技术的发展,实体关系提取方法层出不穷。然而,目前的研究主要强调有效的实体识别,忽视了文本中实体的局部信息对关系提取的重要性,只承认单一关系的存在。为了解决这一问题,提出了一种基于上下文信息融合的实体关系提取方法,结合Bi-RNN进一步提取BERT编码的句子向量。该模型将实体的局部信息与上下文相结合,通过双仿分类器实现多关系分类。此外,该模型还降低了融合信息的维数,以捕获更有效的信息。为了提高泛化能力,还引入了负采样。该模型在多个公共数据集中优于现有的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信