{"title":"A Macro-Level Order Metric for Self-Organizing Adaptive Systems","authors":"David W. King, Gilbert L. Peterson","doi":"10.1109/SASO.2018.00017","DOIUrl":null,"url":null,"abstract":"Analyzing how agent interactions affect macro-level self-organized behaviors can yield a deeper understanding of how complex adaptive systems work. The dynamic nature of complex systems makes it difficult to determine if, or when, a system has reached a state of equilibrium or is about to undergo a major transition reflecting the appearance of self-organized states. Using the notion of local neighborhood entropy, this paper presents a metric for evaluating the macro-level order of a system. The metric is tested in two dissimilar complex adaptive systems with self-organizing properties: an autonomous swarm searching for multiple dynamic targets and Conway's Game of Life. In both domains, the proposed metric is able to graphically capture periods of increasing and decreasing self-organization (i.e. changes in macro-level order), equilibrium and points of criticality; displaying its general applicability in identifying these behaviors in complex adaptive systems.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Analyzing how agent interactions affect macro-level self-organized behaviors can yield a deeper understanding of how complex adaptive systems work. The dynamic nature of complex systems makes it difficult to determine if, or when, a system has reached a state of equilibrium or is about to undergo a major transition reflecting the appearance of self-organized states. Using the notion of local neighborhood entropy, this paper presents a metric for evaluating the macro-level order of a system. The metric is tested in two dissimilar complex adaptive systems with self-organizing properties: an autonomous swarm searching for multiple dynamic targets and Conway's Game of Life. In both domains, the proposed metric is able to graphically capture periods of increasing and decreasing self-organization (i.e. changes in macro-level order), equilibrium and points of criticality; displaying its general applicability in identifying these behaviors in complex adaptive systems.