Rim: Offloading Inference to the Edge

Yitao Hu, Weiwu Pang, Xiaochen Liu, Rajrup Ghosh, Bongjun Ko, Wei-Han Lee, R. Govindan
{"title":"Rim: Offloading Inference to the Edge","authors":"Yitao Hu, Weiwu Pang, Xiaochen Liu, Rajrup Ghosh, Bongjun Ko, Wei-Han Lee, R. Govindan","doi":"10.1145/3450268.3453521","DOIUrl":null,"url":null,"abstract":"Video cameras are among the most ubiquitous sensors in the Internet-of-Things. Video and audio applications, such as cross-camera activity detection, avatar extraction or language translation will, in the future, offload processing to an edge cluster of GPUs. Rim is a management system for such clusters that satisfies throughput and latency requirements of these applications, while enabling high cluster utilization. It uses coarse-grained knowledge of application structure to profile throughput of applications on resources, then uses these profiles to place applications on cluster nodes to achieve these goals. It dynamically adapts placement to load and failures. Experiments show that on maximal workloads on a testbed, Rim can satisfy requirements of all applications, but competing approaches designed for low-latency GPU execution cannot.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Video cameras are among the most ubiquitous sensors in the Internet-of-Things. Video and audio applications, such as cross-camera activity detection, avatar extraction or language translation will, in the future, offload processing to an edge cluster of GPUs. Rim is a management system for such clusters that satisfies throughput and latency requirements of these applications, while enabling high cluster utilization. It uses coarse-grained knowledge of application structure to profile throughput of applications on resources, then uses these profiles to place applications on cluster nodes to achieve these goals. It dynamically adapts placement to load and failures. Experiments show that on maximal workloads on a testbed, Rim can satisfy requirements of all applications, but competing approaches designed for low-latency GPU execution cannot.
边缘:卸载边缘推理
摄像机是物联网中最普遍的传感器之一。视频和音频应用程序,如跨摄像头活动检测、角色提取或语言翻译,未来将把处理工作转移到gpu的边缘集群上。Rim是一个用于此类集群的管理系统,它可以满足这些应用程序的吞吐量和延迟需求,同时实现高集群利用率。它使用应用程序结构的粗粒度知识来分析应用程序在资源上的吞吐量,然后使用这些配置文件将应用程序放置在集群节点上以实现这些目标。它根据负载和故障动态地调整位置。实验表明,在测试平台上的最大工作负载下,Rim可以满足所有应用程序的要求,但竞争对手为低延迟GPU执行而设计的方法却不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信