Auto Code Comment Assessment for Online Judge using Word Embedding and Word Mover's Distance

R. A. Sukamto, M. Rischa, E. Piantari, Yudi Wibisono, R. Megasari
{"title":"Auto Code Comment Assessment for Online Judge using Word Embedding and Word Mover's Distance","authors":"R. A. Sukamto, M. Rischa, E. Piantari, Yudi Wibisono, R. Megasari","doi":"10.1145/3575882.3575949","DOIUrl":null,"url":null,"abstract":"Comments in source code are a form of inline documentation created by programmers to help others understand the function of the program. The students of the basic programming subject need how to learn to write better code comments which can be difficulties for the lecturer assessing. Therefore, the author proposes an automatic source code comment assessment method for the online judge system with a corpus-based text similarity approach. Word2vec, GloVe, and fastText models will be used to train word vectors with the Indonesian Wikipedia Dump. The Similarities will be measured using Word Mover's Distance (WMD). Experiments were carried out using epoch variations during the training process. Spearman's rho correlation coefficient, mean average error (MAE), and performance measurements of each model will be compared. The methods with the proposed word embedding approach still provide not good results.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Comments in source code are a form of inline documentation created by programmers to help others understand the function of the program. The students of the basic programming subject need how to learn to write better code comments which can be difficulties for the lecturer assessing. Therefore, the author proposes an automatic source code comment assessment method for the online judge system with a corpus-based text similarity approach. Word2vec, GloVe, and fastText models will be used to train word vectors with the Indonesian Wikipedia Dump. The Similarities will be measured using Word Mover's Distance (WMD). Experiments were carried out using epoch variations during the training process. Spearman's rho correlation coefficient, mean average error (MAE), and performance measurements of each model will be compared. The methods with the proposed word embedding approach still provide not good results.
基于词嵌入和词移动距离的在线裁判代码评注自动评估
源代码中的注释是程序员创建的一种内联文档形式,用于帮助其他人理解程序的功能。基础编程学科的学生需要学习如何编写更好的代码注释,这可能是讲师评估的困难。因此,作者提出了一种基于语料库的文本相似度方法的在线裁判系统源代码注释自动评估方法。Word2vec、GloVe和fastText模型将用于训练印度尼西亚维基百科转储的词向量。相似度将使用Word Mover's Distance (WMD)来衡量。在训练过程中使用历元变化进行实验。将比较各模型的Spearman相关系数、平均误差(MAE)和性能测量结果。采用所提出的词嵌入方法的方法仍然没有取得很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信