A new form of the extended Kalman filter for parameter estimation in linear systems

V. Panuska
{"title":"A new form of the extended Kalman filter for parameter estimation in linear systems","authors":"V. Panuska","doi":"10.1109/CDC.1979.270083","DOIUrl":null,"url":null,"abstract":"A well-known method for estimation of parameters in linear systems with correlated noise is the extended Kalman filter where the unknown parameters are estimated as a part of an enlarged state vector. To avoid the computational burden in determining the state estimates when only the parameter estimates are required, a new simple form of the extended Kalman filter, where the state consists only of the parameters to be estimated, is proposed. The algorithm is based on the inclusion of the computed residuals in the observation matrix of a state representation of the system, an idea first introduced in the so-called extended least squares or Panuska's method. Convergence properties of the proposed algorithm are studied and the algorithm is shown to perform a gradient-based minimization of the maximum likelihood loss function. Some special cases of the algorithm are also discussed and an extension to an estimator for randomly varying parameters is outlined.","PeriodicalId":338908,"journal":{"name":"1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1979.270083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

A well-known method for estimation of parameters in linear systems with correlated noise is the extended Kalman filter where the unknown parameters are estimated as a part of an enlarged state vector. To avoid the computational burden in determining the state estimates when only the parameter estimates are required, a new simple form of the extended Kalman filter, where the state consists only of the parameters to be estimated, is proposed. The algorithm is based on the inclusion of the computed residuals in the observation matrix of a state representation of the system, an idea first introduced in the so-called extended least squares or Panuska's method. Convergence properties of the proposed algorithm are studied and the algorithm is shown to perform a gradient-based minimization of the maximum likelihood loss function. Some special cases of the algorithm are also discussed and an extension to an estimator for randomly varying parameters is outlined.
一种用于线性系统参数估计的扩展卡尔曼滤波器的新形式
在具有相关噪声的线性系统中估计参数的一种众所周知的方法是扩展卡尔曼滤波,其中未知参数作为放大状态向量的一部分进行估计。为了避免仅需要参数估计时确定状态估计的计算负担,提出了一种新的简单形式的扩展卡尔曼滤波器,其中状态仅由待估计的参数组成。该算法基于将计算残差包含在系统状态表示的观察矩阵中,这一思想最初是在所谓的扩展最小二乘或Panuska方法中引入的。研究了该算法的收敛性,并证明了该算法对最大似然损失函数进行了基于梯度的最小化。文中还讨论了该算法的一些特殊情况,并给出了对随机变参数估计的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信