STr-GCN: Dual Spatial Graph Convolutional Network and Transformer Graph Encoder for 3D Hand Gesture Recognition

Rim Slama, W. Rabah, H. Wannous
{"title":"STr-GCN: Dual Spatial Graph Convolutional Network and Transformer Graph Encoder for 3D Hand Gesture Recognition","authors":"Rim Slama, W. Rabah, H. Wannous","doi":"10.1109/FG57933.2023.10042643","DOIUrl":null,"url":null,"abstract":"Skeleton-based hand gesture recognition is a challenging task that sparked a lot of attention in recent years, especially with the rise of Graph Neural Networks. In this paper, we propose a new deep learning architecture for hand gesture recognition using 3D hand skeleton data and we call STr-GCN. It decouples the spatial and temporal learning of the gesture by leveraging Graph Convolutional Networks (GCN) and Transformers. The key idea is to combine two powerful networks: a Spatial Graph Convolutional Network unit that understands intra-frame interactions to extract powerful features from different hand joints and a Transformer Graph Encoder which is based on a Temporal Self-Attention module to incorporate inter-frame correlations. We evaluate the performance of our method on three benchmarks: the SHREC'17 Track dataset, Briareo dataset and the First Person Hand Action dataset. The experiments show the efficiency of our approach, which achieves or outperforms the state of the art. The code to reproduce our results is available in this link.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Skeleton-based hand gesture recognition is a challenging task that sparked a lot of attention in recent years, especially with the rise of Graph Neural Networks. In this paper, we propose a new deep learning architecture for hand gesture recognition using 3D hand skeleton data and we call STr-GCN. It decouples the spatial and temporal learning of the gesture by leveraging Graph Convolutional Networks (GCN) and Transformers. The key idea is to combine two powerful networks: a Spatial Graph Convolutional Network unit that understands intra-frame interactions to extract powerful features from different hand joints and a Transformer Graph Encoder which is based on a Temporal Self-Attention module to incorporate inter-frame correlations. We evaluate the performance of our method on three benchmarks: the SHREC'17 Track dataset, Briareo dataset and the First Person Hand Action dataset. The experiments show the efficiency of our approach, which achieves or outperforms the state of the art. The code to reproduce our results is available in this link.
面向三维手势识别的双空间图卷积网络和变换图编码器
基于骨骼的手势识别是一项具有挑战性的任务,近年来引起了很多关注,特别是随着图神经网络的兴起。在本文中,我们提出了一种新的基于3D手部骨骼数据的手部手势识别深度学习架构,我们称之为STr-GCN。它通过利用图形卷积网络(GCN)和变形器来解耦手势的空间和时间学习。关键思想是结合两个强大的网络:一个空间图卷积网络单元,它理解帧内的相互作用,从不同的手关节中提取强大的特征;一个变压器图编码器,它基于时间自关注模块,结合帧间的相关性。我们在三个基准上评估了我们的方法的性能:SHREC'17 Track数据集、Briareo数据集和第一人称手部动作数据集。实验证明了我们的方法的有效性,达到或超过了目前的水平。复制我们的结果的代码可以在这个链接中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信