Biological interaction networks based on sparse temporal expansion of graphical models

K. Kalantzaki, E. Bei, M. Garofalakis, M. Zervakis
{"title":"Biological interaction networks based on sparse temporal expansion of graphical models","authors":"K. Kalantzaki, E. Bei, M. Garofalakis, M. Zervakis","doi":"10.1109/BIBE.2012.6399721","DOIUrl":null,"url":null,"abstract":"Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.
基于图形模型稀疏时间展开的生物交互网络
在分子生物学的基因和蛋白质序列分析中,生物网络通常被描述为概率图。微阵列和蛋白质组学技术允许随着时间的推移监测数千个生物单位的表达水平。在实验中,我们感兴趣的是揭示成对的相互作用。为了从表达式数据分析中发现关联,引入了许多图形模型。然而,与观察到的基因/蛋白质数量相比,样本的规模较小,使得网络结构的推断相当具有挑战性。在这项研究中,我们使用两种方法,偏相关和核密度估计从稀疏实验数据中生成基因-蛋白质网络,以捕获遗传相互作用。动态高斯分析用于匹配特殊特征的基因和蛋白质在不同的时间阶段利用KDE方法来表达高斯关联与非线性参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信