Interactive metric learning system for similar image search using Linear Discriminant Analysis

N. Lerthirunwong, I. Shimizu
{"title":"Interactive metric learning system for similar image search using Linear Discriminant Analysis","authors":"N. Lerthirunwong, I. Shimizu","doi":"10.1109/GCCE.2012.6379581","DOIUrl":null,"url":null,"abstract":"Similar image search algorithm is important technique for efficiently search the images of our interests in the large pool of image data. In this paper, we propose an interactive metric learning search system using Linear Discriminant Analysis (LDA). We rank the search result based on the Mahalanobis distance calculated from SIFT feature vectors and use a LDA which enables users to update a search result until the returned results are relevant or satisfied by users. Moreover, we also examine the efficient learning rate and dimension size of feature vector for this model to enhance the search results. The efficiency of our model is confirmed through the intensive experiment using dataset from Caltech-256 which shows that the third updated result's accuracy can be increased by more than 57% from the default result's accuracy using our method.","PeriodicalId":299732,"journal":{"name":"The 1st IEEE Global Conference on Consumer Electronics 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Global Conference on Consumer Electronics 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2012.6379581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Similar image search algorithm is important technique for efficiently search the images of our interests in the large pool of image data. In this paper, we propose an interactive metric learning search system using Linear Discriminant Analysis (LDA). We rank the search result based on the Mahalanobis distance calculated from SIFT feature vectors and use a LDA which enables users to update a search result until the returned results are relevant or satisfied by users. Moreover, we also examine the efficient learning rate and dimension size of feature vector for this model to enhance the search results. The efficiency of our model is confirmed through the intensive experiment using dataset from Caltech-256 which shows that the third updated result's accuracy can be increased by more than 57% from the default result's accuracy using our method.
基于线性判别分析的相似图像搜索交互式度量学习系统
相似图像搜索算法是在海量图像数据中高效搜索我们感兴趣的图像的重要技术。本文提出一种基于线性判别分析(LDA)的交互式度量学习搜索系统。我们根据从SIFT特征向量计算的马氏距离对搜索结果进行排序,并使用LDA,使用户能够更新搜索结果,直到返回的结果与用户相关或用户满意为止。此外,我们还检查了该模型的有效学习率和特征向量的维数大小,以增强搜索结果。通过对Caltech-256数据集的深入实验,验证了该模型的有效性,结果表明,使用该方法进行第三次更新后的结果精度比默认结果精度提高了57%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信