Ruihong Jiang, Ke Xiong, Pingyi Fan, Duohua Wang, Z. Zhong
{"title":"Information-Energy Region of Mobile SWIPT Networks with Nonlinear EH Model","authors":"Ruihong Jiang, Ke Xiong, Pingyi Fan, Duohua Wang, Z. Zhong","doi":"10.1109/ICC.2019.8761069","DOIUrl":null,"url":null,"abstract":"This paper investigates the information-energy (I-E) region for simultaneous wireless information and power transfer (SWIPT) system in mobility scenarios, where a moving transmitter transmits information and energy to a power splitting (PS)-based receiver. An optimization problem is formulated to explore the system I-E region under the nonlinear energy harvesting (EH) model by jointly optimizing the transmit power at the transmitter and the PS ratio at the receiver. Since the problem is nonconvex, a successive convex approximate-based (SCA-based) algorithm is proposed, which is able to find the sub-optimal solution with low complexity. For comparison, the I-E region of the system under the linear model is also studied, where some closed and semi-closed solutions are derived by using Lagrange dual method and KKT conditions. Numerical results show that compared with the linear EH model, the nonlinear EH model yields a smaller I-E region due to the limitations of EH circuit features. Nevertheless, using the nonlinear EH model avoids the false achievable I-E region for practical mobile SWIPT systems. Besides, it shows that the higher moving speed yields the smaller I-E region. Moreover, with the increment of the required information amount, the harvested energy bias caused by the linear EH model decreases, but the bias ratio increases.","PeriodicalId":402732,"journal":{"name":"ICC 2019 - 2019 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2019 - 2019 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2019.8761069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the information-energy (I-E) region for simultaneous wireless information and power transfer (SWIPT) system in mobility scenarios, where a moving transmitter transmits information and energy to a power splitting (PS)-based receiver. An optimization problem is formulated to explore the system I-E region under the nonlinear energy harvesting (EH) model by jointly optimizing the transmit power at the transmitter and the PS ratio at the receiver. Since the problem is nonconvex, a successive convex approximate-based (SCA-based) algorithm is proposed, which is able to find the sub-optimal solution with low complexity. For comparison, the I-E region of the system under the linear model is also studied, where some closed and semi-closed solutions are derived by using Lagrange dual method and KKT conditions. Numerical results show that compared with the linear EH model, the nonlinear EH model yields a smaller I-E region due to the limitations of EH circuit features. Nevertheless, using the nonlinear EH model avoids the false achievable I-E region for practical mobile SWIPT systems. Besides, it shows that the higher moving speed yields the smaller I-E region. Moreover, with the increment of the required information amount, the harvested energy bias caused by the linear EH model decreases, but the bias ratio increases.