Network Anomaly Detection by IP Flow Graph Analysis: A DDoS Attack Case Study

A. A. Amaral, L. Mendes, Eduardo H. M. Pena, B. Zarpelão, M. L. Proença
{"title":"Network Anomaly Detection by IP Flow Graph Analysis: A DDoS Attack Case Study","authors":"A. A. Amaral, L. Mendes, Eduardo H. M. Pena, B. Zarpelão, M. L. Proença","doi":"10.1109/SCCC.2013.14","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach for anomaly detection. The solution consists of an automatic detection system that operates without the need of network administrator intervention. Network IP flows are modeled by a graph and Tsallis entropy is applied in order to detect anomalies. Furthermore, our solution can extract and present detailed information from the network traffic. It provides to the network administrator a wide view of the damages that network anomalies cause. In order to evaluate the effectiveness of the proposed solution, it was used real data collected from a DDoS attack.","PeriodicalId":182181,"journal":{"name":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 32nd International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a novel approach for anomaly detection. The solution consists of an automatic detection system that operates without the need of network administrator intervention. Network IP flows are modeled by a graph and Tsallis entropy is applied in order to detect anomalies. Furthermore, our solution can extract and present detailed information from the network traffic. It provides to the network administrator a wide view of the damages that network anomalies cause. In order to evaluate the effectiveness of the proposed solution, it was used real data collected from a DDoS attack.
基于IP流图分析的网络异常检测:一个DDoS攻击案例研究
本文介绍了一种新的异常检测方法。该解决方案由一个自动检测系统组成,该系统无需网络管理员干预即可运行。利用网络IP流图建模,利用Tsallis熵检测网络IP流异常。此外,我们的解决方案可以从网络流量中提取和呈现详细的信息。它为网络管理员提供了一个广泛的视野,了解网络异常造成的危害。为了评估所提出的解决方案的有效性,使用了从DDoS攻击中收集的真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信