A 2/sup d/-tree-based blocking method for microaggregating very large data sets

A. Solanas, A. Martmez-Balleste, J. Domingo-Ferrer, J. M. Mateo-Sanz
{"title":"A 2/sup d/-tree-based blocking method for microaggregating very large data sets","authors":"A. Solanas, A. Martmez-Balleste, J. Domingo-Ferrer, J. M. Mateo-Sanz","doi":"10.1109/ARES.2006.1","DOIUrl":null,"url":null,"abstract":"Blocking is a well-known technique used to partition a set of records into several subsets of manageable size. The standard approach to blocking is to split the records according to the values of one or several attributes (called blocking attributes). This paper presents a new blocking method based on 2/sup d/-trees for intelligently partitioning very large data sets for micro aggregation. A number of experiments has been carried out in order to compare our method with the most typical univariate one.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Blocking is a well-known technique used to partition a set of records into several subsets of manageable size. The standard approach to blocking is to split the records according to the values of one or several attributes (called blocking attributes). This paper presents a new blocking method based on 2/sup d/-trees for intelligently partitioning very large data sets for micro aggregation. A number of experiments has been carried out in order to compare our method with the most typical univariate one.
一种基于2/sup /-tree的阻塞方法,用于微聚合非常大的数据集
阻塞是一种众所周知的技术,用于将一组记录划分为几个可管理大小的子集。阻塞的标准方法是根据一个或多个属性(称为阻塞属性)的值拆分记录。本文提出了一种基于2/sup /-树的块化方法,用于对超大数据集进行微聚合智能分区。为了将我们的方法与最典型的单变量方法进行比较,进行了许多实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信