{"title":"The supremum sum-rate loss of quadratic Gaussian direct multiterminal source coding","authors":"Yang Yang, Zixiang Xiong","doi":"10.1109/ITA.2008.4601088","DOIUrl":null,"url":null,"abstract":"Wagner et al. recently characterized the rate region for the quadratic Gaussian two-terminal source coding problem. They also show that the Berger-Tung sum-rate bound is tight in the symmetric case, where all sources are positively symmetric and all target distortions are equal. This work studies the sum-rate loss of quadratic Gaussian direct multiterminal source coding. We first give the minimum sum-rate for joint encoding of Gaussian sources in the symmetric case, we than show that the supremum of the sum-rate loss due to distributed encoding in this case is 1/2 log2 5/4 = 0.161 b/s when L = 2 and increases in the order of radic(L)/2 log2 e b/s as the number of terminals L goes to infinity. The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general quadratic Gaussian two-terminal source coding without the symmetric assumption. It is conjectured that this equality holds for any number of terminals.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Wagner et al. recently characterized the rate region for the quadratic Gaussian two-terminal source coding problem. They also show that the Berger-Tung sum-rate bound is tight in the symmetric case, where all sources are positively symmetric and all target distortions are equal. This work studies the sum-rate loss of quadratic Gaussian direct multiterminal source coding. We first give the minimum sum-rate for joint encoding of Gaussian sources in the symmetric case, we than show that the supremum of the sum-rate loss due to distributed encoding in this case is 1/2 log2 5/4 = 0.161 b/s when L = 2 and increases in the order of radic(L)/2 log2 e b/s as the number of terminals L goes to infinity. The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general quadratic Gaussian two-terminal source coding without the symmetric assumption. It is conjectured that this equality holds for any number of terminals.