A Convolutional Neural Network for Multiscale Modeling of Composite Materials

Alexander Sorini, E. Pineda, J. Stuckner, P. Gustafson
{"title":"A Convolutional Neural Network for Multiscale Modeling of Composite Materials","authors":"Alexander Sorini, E. Pineda, J. Stuckner, P. Gustafson","doi":"10.2514/6.2021-0310","DOIUrl":null,"url":null,"abstract":"An artificial convolutional neural network was created to efficiently mimic a micromechanics model, the High Fidelity Generalized Method of Cells, for use in multi-scale structural finite element analysis. The network was found to quickly and accurately replicate the stiffness predicted by the micromechanics model using a 2D image of an idealized representative volume element of a fiber/matrix microstructure. The long-term goal of this work is to efficiently apply multi-scale methods for predicting the damage progression of a composite structure.","PeriodicalId":165313,"journal":{"name":"AIAA Scitech 2021 Forum","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Scitech 2021 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2021-0310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An artificial convolutional neural network was created to efficiently mimic a micromechanics model, the High Fidelity Generalized Method of Cells, for use in multi-scale structural finite element analysis. The network was found to quickly and accurately replicate the stiffness predicted by the micromechanics model using a 2D image of an idealized representative volume element of a fiber/matrix microstructure. The long-term goal of this work is to efficiently apply multi-scale methods for predicting the damage progression of a composite structure.
基于卷积神经网络的复合材料多尺度建模
建立了一个人工卷积神经网络来有效地模拟微观力学模型,即高保真广义细胞法,用于多尺度结构有限元分析。研究发现,该网络可以快速准确地复制由纤维/基体微观结构的理想代表性体积单元的二维图像所预测的微力学模型的刚度。本工作的长期目标是有效地应用多尺度方法来预测复合材料结构的损伤进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信