Dynamic Offloading for Improved Performance and Energy Efficiency in Heterogeneous IoT-Edge-Cloud Continuum

J. Vicenzi, Guilherme Korol, M. Jordan, Wagner Ourique de Morais, Hazem Ali, Edison Pignaton De Freitas, M. B. Rutzig, A. C. S. Beck
{"title":"Dynamic Offloading for Improved Performance and Energy Efficiency in Heterogeneous IoT-Edge-Cloud Continuum","authors":"J. Vicenzi, Guilherme Korol, M. Jordan, Wagner Ourique de Morais, Hazem Ali, Edison Pignaton De Freitas, M. B. Rutzig, A. C. S. Beck","doi":"10.1109/ISVLSI59464.2023.10238564","DOIUrl":null,"url":null,"abstract":"While machine learning applications in IoT devices are getting more widespread, the computational and power limitations of these devices pose a great challenge. To handle this increasing computational burden, edge, and cloud solutions emerge as a means to offload computation to more powerful devices. However, the unstable nature of network connections constantly changes the communication costs, making the offload process (i.e., when and where to transfer data) a dynamic trade-off. In this work, we propose DECOS: a framework to automatically select at run-time the best offloading solution with minimum latency based on the computational capabilities of devices and network status at a given moment. We use heterogeneous devices for edge and Cloud nodes to evaluate the framework’s performance using MobileNetV1 CNN and network traffic data from a real-world 4G bandwidth dataset. DECOS effectively selects the best processing node to maintain the minimum possible latency, reducing it up to 29% compared to Cloud-exclusive processing while reducing the energy consumption by 1.9$\\times$ compared to IoT-exclusive execution.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While machine learning applications in IoT devices are getting more widespread, the computational and power limitations of these devices pose a great challenge. To handle this increasing computational burden, edge, and cloud solutions emerge as a means to offload computation to more powerful devices. However, the unstable nature of network connections constantly changes the communication costs, making the offload process (i.e., when and where to transfer data) a dynamic trade-off. In this work, we propose DECOS: a framework to automatically select at run-time the best offloading solution with minimum latency based on the computational capabilities of devices and network status at a given moment. We use heterogeneous devices for edge and Cloud nodes to evaluate the framework’s performance using MobileNetV1 CNN and network traffic data from a real-world 4G bandwidth dataset. DECOS effectively selects the best processing node to maintain the minimum possible latency, reducing it up to 29% compared to Cloud-exclusive processing while reducing the energy consumption by 1.9$\times$ compared to IoT-exclusive execution.
在异构物联网边缘云连续体中提高性能和能源效率的动态卸载
虽然机器学习在物联网设备中的应用越来越广泛,但这些设备的计算和功率限制构成了巨大的挑战。为了处理这种不断增加的计算负担,边缘和云解决方案作为一种将计算卸载到更强大的设备上的手段出现了。然而,网络连接的不稳定性不断改变通信成本,使得卸载过程(即何时何地传输数据)成为一种动态权衡。在这项工作中,我们提出DECOS:一个框架,在运行时根据设备的计算能力和给定时刻的网络状态自动选择具有最小延迟的最佳卸载解决方案。我们使用边缘和云节点的异构设备,使用MobileNetV1 CNN和来自真实4G带宽数据集的网络流量数据来评估框架的性能。DECOS有效地选择最佳处理节点以保持尽可能小的延迟,与云独占处理相比,延迟减少了29%,而与物联网独占执行相比,能耗减少了1.9美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信