3.1 Structural phase transitions

J. Tolédano, V. Janovec, V. Kopský, J. Scott, P. Boček
{"title":"3.1 Structural phase transitions","authors":"J. Tolédano, V. Janovec, V. Kopský, J. Scott, P. Boček","doi":"10.1107/97809553602060000915","DOIUrl":null,"url":null,"abstract":"Aspects of phase transitions in crystals that are of interest to crystallographers are described in this chapter. The chapter starts with a brief introduction aimed at defining the field of structural transitions and the terminology used. The theory of structural phase transitions is then described. This theory relates the symmetry characteristics of the transitions to their physical characteristics. The application of the symmetry principles that derive from this theory is illustrated by the results contained in Tables 3.1.3.1 and 3.1.4.1. The first of these two tables concerns the simple but experimentally widespread situation in which a structural transition is not accompanied by a change in the number of atoms per primitive crystal cell. The second table concerns the general case, in which the number of atoms changes, and which corresponds to the onset of superlattice reflections at the phase transition. This table provides, for a set of hypothetical transformations, the various symmetry-based predictions of the theory. The important topic of soft modes, which is related to the microscopic mechanism of a structural transition, is then discussed. The final section of the chapter is an introduction to the accompanying software package Group Informatics. \n \n \nKeywords: \n \nCurie temperature; \nLandau theory; \nLandau–Devonshire theory; \ndomain states; \nenantiomorphism; \nequitranslational phase transitions; \nequitranslational subgroups; \nferroelastic materials; \nferroelastic phases; \nferroelastic transitions; \nferroelectric materials; \nferroelectric phases; \nferroelectric transitions; \nferroic classes; \nferroic domain states; \nferroic phases; \nferroic single-domain states; \nferroic symmetry; \nferroic transitions; \nfree energy; \nhigh-symmetry phases; \nhigh-temperature superconductors; \nirreducible representations; \nlow-symmetry phases; \nnon-equitranslational phase transitions; \norder parameter; \nparent phases; \nparent symmetry; \nphase transitions; \nphysical property tensors; \nprototype phases; \nsoft modes; \nsuperconductors; \ntensor parameter","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"481 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aspects of phase transitions in crystals that are of interest to crystallographers are described in this chapter. The chapter starts with a brief introduction aimed at defining the field of structural transitions and the terminology used. The theory of structural phase transitions is then described. This theory relates the symmetry characteristics of the transitions to their physical characteristics. The application of the symmetry principles that derive from this theory is illustrated by the results contained in Tables 3.1.3.1 and 3.1.4.1. The first of these two tables concerns the simple but experimentally widespread situation in which a structural transition is not accompanied by a change in the number of atoms per primitive crystal cell. The second table concerns the general case, in which the number of atoms changes, and which corresponds to the onset of superlattice reflections at the phase transition. This table provides, for a set of hypothetical transformations, the various symmetry-based predictions of the theory. The important topic of soft modes, which is related to the microscopic mechanism of a structural transition, is then discussed. The final section of the chapter is an introduction to the accompanying software package Group Informatics. Keywords: Curie temperature; Landau theory; Landau–Devonshire theory; domain states; enantiomorphism; equitranslational phase transitions; equitranslational subgroups; ferroelastic materials; ferroelastic phases; ferroelastic transitions; ferroelectric materials; ferroelectric phases; ferroelectric transitions; ferroic classes; ferroic domain states; ferroic phases; ferroic single-domain states; ferroic symmetry; ferroic transitions; free energy; high-symmetry phases; high-temperature superconductors; irreducible representations; low-symmetry phases; non-equitranslational phase transitions; order parameter; parent phases; parent symmetry; phase transitions; physical property tensors; prototype phases; soft modes; superconductors; tensor parameter
3.1结构相变
晶体学家感兴趣的晶体相变的各个方面在本章中进行了描述。本章以一个简短的介绍开始,旨在定义结构转换领域和使用的术语。然后描述了结构相变理论。这个理论把跃迁的对称性与它们的物理特性联系起来。表3.1.3.1和3.1.4.1中的结果说明了从这个理论推导出的对称原理的应用。这两张表中的第一张表涉及一种简单但在实验中普遍存在的情况,即结构转变并不伴随着每个原始晶胞原子数的变化。第二张表涉及一般情况,其中原子数发生变化,并且对应于相变时超晶格反射的开始。这个表格提供了一组假设的变换,各种基于对称性的理论预测。然后讨论了与结构转变的微观机制有关的软模态这一重要课题。本章的最后一部分是对附带的软件包Group Informatics的介绍。关键词:居里温度;朗道理论;Landau-Devonshire理论;域;镜像性;等平移相变;equitranslational子组;铁弹性的材料;铁弹性的阶段;铁弹性的转变;铁电材料;铁电阶段;铁电转变;ferroic类;铁畴态;ferroic阶段;铁单畴态;ferroic对称;ferroic过渡;自由能;high-symmetry阶段;高温超导体;不可约表示;low-symmetry阶段;非等平移相变;命令参数;父阶段;父母对称;相变;物理性质张量;原型阶段;软模式;超导体;张量参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信