A hybrid learning algorithm for Interval Type-2 Fuzzy Neural Networks in time series prediction for the case of air pollution

J. R. Castro, O. Castillo, P. Melin, Antonio Rodríguez-Díaz
{"title":"A hybrid learning algorithm for Interval Type-2 Fuzzy Neural Networks in time series prediction for the case of air pollution","authors":"J. R. Castro, O. Castillo, P. Melin, Antonio Rodríguez-Díaz","doi":"10.1109/NAFIPS.2008.4531338","DOIUrl":null,"url":null,"abstract":"Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality index in urban areas is important due to health impact. Hybrid intelligent techniques are successfully used in modeling of highly complex and non-linear phenomena. In this paper, interval type-2 fuzzy neural network (IT2FNN) hybrid method has been proposed to predict the impact of meteorological pollutants on ozone (O3) over an urban area. The IT2FNN model forecasts trends in O3 with high performance.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality index in urban areas is important due to health impact. Hybrid intelligent techniques are successfully used in modeling of highly complex and non-linear phenomena. In this paper, interval type-2 fuzzy neural network (IT2FNN) hybrid method has been proposed to predict the impact of meteorological pollutants on ozone (O3) over an urban area. The IT2FNN model forecasts trends in O3 with high performance.
区间2型模糊神经网络在空气污染时间序列预测中的混合学习算法
空气污染是一个日益严重的问题,这是由于家庭供暖、车辆交通的高密度、电力生产以及商业和工业活动的扩大而引起的,所有这些都与城市人口同时增加。城市空气质量指数的监测和预报对健康影响很大。混合智能技术成功地应用于高度复杂和非线性现象的建模。本文提出了区间2型模糊神经网络(IT2FNN)混合预测方法,用于预测气象污染物对城市臭氧的影响。IT2FNN模型预测了高性能的O3趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信