Improved Unsupervised Clustering over Watershed-Based Clustering

Sai Venu Gopal Lolla, L. L. Hoberock
{"title":"Improved Unsupervised Clustering over Watershed-Based Clustering","authors":"Sai Venu Gopal Lolla, L. L. Hoberock","doi":"10.1109/ICMLA.2010.44","DOIUrl":null,"url":null,"abstract":"This paper improves upon an existing Watershed algorithm-based clustering method. The existing method uses an experimentally determined parameter to construct a density function. A better method for evaluating the cell/window size (used in the construction of the density function) is proposed, eliminating the need for arbitrary parameters. The algorithm has been tested on both published and unpublished synthetic data, and the results demonstrate that the proposed approach is able to accurately estimate the number of clusters present in the data.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper improves upon an existing Watershed algorithm-based clustering method. The existing method uses an experimentally determined parameter to construct a density function. A better method for evaluating the cell/window size (used in the construction of the density function) is proposed, eliminating the need for arbitrary parameters. The algorithm has been tested on both published and unpublished synthetic data, and the results demonstrate that the proposed approach is able to accurately estimate the number of clusters present in the data.
基于分水岭聚类的改进无监督聚类
本文改进了现有的基于Watershed算法的聚类方法。现有的方法使用实验确定的参数来构造密度函数。提出了一种更好的方法来评估单元/窗口大小(用于密度函数的构造),消除了对任意参数的需要。该算法在已发表和未发表的合成数据上进行了测试,结果表明该方法能够准确地估计数据中存在的聚类数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信