Comparison of different classifier in WEKA for rheumatoid arthritis

S. Chokkalingam, K. Komathy
{"title":"Comparison of different classifier in WEKA for rheumatoid arthritis","authors":"S. Chokkalingam, K. Komathy","doi":"10.1109/ICHCI-IEEE.2013.6887821","DOIUrl":null,"url":null,"abstract":"Analyzing the hidden information from the images are helpful to identify the various causes. In general processing of images includes Pre-processing, segmentation, Feature extraction and Classification. Significance of classifier is essential since results are always based on the classifier. The ultimate aim is to explain how WEKA tool is used for rheumatoid arthritis and investigate the performance of the various classifiers for huge data. In our method we are distinctively give attention to the classification methods like ADTree, Best First Decision tree(BF), Decision stump, J48Pruned tree, J48 Graft Pruned tree, Least Absolute Deviation regression trees (LAD), Logistic Model Tree(LMT), Naïve-Bayes (NB), Random tree, Random forest tree, CART Decision tree. The features like Area, perimeter, circularity, integrated density, Median, Skewness, Raw integrated density, and Roundness and solidity are obtained from the Lymphocytes images and formed the data set. Different classifier is applied for RA facet for Validation. RA facet contains 108 rows and 10 columns. Using classifier to find out the various values like Relative Absolute Error, and Kappa Statistic, Mean Absolute Error, Root Mean Squared Error and Root Relative Squared Error. From those values compare with all the methods ADT classifier is suggested for use in huge data.","PeriodicalId":419263,"journal":{"name":"2013 International Conference on Human Computer Interactions (ICHCI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Human Computer Interactions (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI-IEEE.2013.6887821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Analyzing the hidden information from the images are helpful to identify the various causes. In general processing of images includes Pre-processing, segmentation, Feature extraction and Classification. Significance of classifier is essential since results are always based on the classifier. The ultimate aim is to explain how WEKA tool is used for rheumatoid arthritis and investigate the performance of the various classifiers for huge data. In our method we are distinctively give attention to the classification methods like ADTree, Best First Decision tree(BF), Decision stump, J48Pruned tree, J48 Graft Pruned tree, Least Absolute Deviation regression trees (LAD), Logistic Model Tree(LMT), Naïve-Bayes (NB), Random tree, Random forest tree, CART Decision tree. The features like Area, perimeter, circularity, integrated density, Median, Skewness, Raw integrated density, and Roundness and solidity are obtained from the Lymphocytes images and formed the data set. Different classifier is applied for RA facet for Validation. RA facet contains 108 rows and 10 columns. Using classifier to find out the various values like Relative Absolute Error, and Kappa Statistic, Mean Absolute Error, Root Mean Squared Error and Root Relative Squared Error. From those values compare with all the methods ADT classifier is suggested for use in huge data.
类风湿关节炎WEKA不同分类器的比较
分析图像中的隐藏信息有助于识别各种原因。一般的图像处理包括预处理、分割、特征提取和分类。分类器的意义是至关重要的,因为结果总是基于分类器。最终目的是解释WEKA工具如何用于类风湿关节炎,并研究各种分类器对大数据的性能。在我们的方法中,我们特别关注ADTree,最佳第一决策树(BF),决策树桩,J48剪枝树,J48嫁接剪枝树,最小绝对偏差回归树(LAD), Logistic模型树(LMT), Naïve-Bayes (NB),随机树,随机森林树,CART决策树等分类方法。从淋巴细胞图像中获取Area、perimeter、circularity、integrated density、Median、Skewness、Raw integrated density、Roundness and solid等特征,形成数据集。对RA面采用不同的分类器进行验证。RA facet包含108行和10列。使用分类器找出相对绝对误差、Kappa统计量、平均绝对误差、均方根误差和根相对平方误差等各种值。通过与各种方法的比较,建议在海量数据中使用ADT分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信