A study of Particle Swarm Optimization on leukocyte adhesion molecules and control strategies for smart prosthetic hand

Cheng-Hung Chen, K. Bosworth, M. Schoen, S. Bearden, D. Naidu, A. P. Gracia
{"title":"A study of Particle Swarm Optimization on leukocyte adhesion molecules and control strategies for smart prosthetic hand","authors":"Cheng-Hung Chen, K. Bosworth, M. Schoen, S. Bearden, D. Naidu, A. P. Gracia","doi":"10.1109/SIS.2008.4668324","DOIUrl":null,"url":null,"abstract":"Hard computing based optimization algorithms usually require a lot of computational resources and generally do not have the ability to arrive at the global optimum solution. Soft computing algorithms on the other hand negate these deficiencies, by allowing for reduced computational loads and the ability to find global optimal solutions, even for complex cost surfaces. This paper presents two numerical case studies where a particle swarm optimization (PSO) algorithm is applied to biomedical problems. In particular, the problem of identifying the rupture force for leukocyte adhesion molecules and the problem of finding the correct control parameters of a robotic hand, are addressed. Simulation results indicate that PSO is a feasible alternative to the computational expensive hard computing algorithms.","PeriodicalId":178251,"journal":{"name":"2008 IEEE Swarm Intelligence Symposium","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2008.4668324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hard computing based optimization algorithms usually require a lot of computational resources and generally do not have the ability to arrive at the global optimum solution. Soft computing algorithms on the other hand negate these deficiencies, by allowing for reduced computational loads and the ability to find global optimal solutions, even for complex cost surfaces. This paper presents two numerical case studies where a particle swarm optimization (PSO) algorithm is applied to biomedical problems. In particular, the problem of identifying the rupture force for leukocyte adhesion molecules and the problem of finding the correct control parameters of a robotic hand, are addressed. Simulation results indicate that PSO is a feasible alternative to the computational expensive hard computing algorithms.
智能假手白细胞粘附分子的粒子群优化及控制策略研究
基于硬计算的优化算法通常需要大量的计算资源,并且通常不具备达到全局最优解的能力。另一方面,软计算算法通过减少计算负载和找到全局最优解决方案的能力来消除这些缺陷,即使对于复杂的成本曲面也是如此。本文给出了两个应用粒子群优化算法求解生物医学问题的实例研究。特别是,识别白细胞粘附分子的破裂力问题和找到正确的机器人手控制参数的问题,都得到了解决。仿真结果表明,粒子群算法是一种可行的替代计算成本高的硬计算算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信