Learning-Based Analysis of a New Wearable 3D Force System Data to Classify the Underlying Surface of a Walking Robot

L. Almeida, Vítor M. F. Santos, J. Ferreira
{"title":"Learning-Based Analysis of a New Wearable 3D Force System Data to Classify the Underlying Surface of a Walking Robot","authors":"L. Almeida, Vítor M. F. Santos, J. Ferreira","doi":"10.1142/s0219843620500115","DOIUrl":null,"url":null,"abstract":"Biped humanoid robots that operate in real-world environments need to be able to physically recognize different floors to best adapt their gait. In this work, we describe the preparation of a dataset of contact forces obtained with eight force tactile sensors for determining the underlying surface of a walking robot. The data is acquired for four floors with different coefficient of friction, and different robot gaits and speeds. To classify the different floors, the data is used as input for two common computational intelligence techniques (CITs): Artificial neural network (ANN) and extreme learning machine (ELM). After optimizing the parameters for both CITs, a good mapping between inputs and targets is achieved with classification accuracies of about 99%.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219843620500115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Biped humanoid robots that operate in real-world environments need to be able to physically recognize different floors to best adapt their gait. In this work, we describe the preparation of a dataset of contact forces obtained with eight force tactile sensors for determining the underlying surface of a walking robot. The data is acquired for four floors with different coefficient of friction, and different robot gaits and speeds. To classify the different floors, the data is used as input for two common computational intelligence techniques (CITs): Artificial neural network (ANN) and extreme learning machine (ELM). After optimizing the parameters for both CITs, a good mapping between inputs and targets is achieved with classification accuracies of about 99%.
基于学习分析的新型可穿戴三维力系统数据对行走机器人下垫面进行分类
在现实环境中工作的双足类人机器人需要能够识别不同的地板,以最好地适应它们的步态。在这项工作中,我们描述了使用八个力触觉传感器获得的接触力数据集的准备工作,用于确定步行机器人的下表面。数据采集了四个不同摩擦系数、不同机器人步态和速度的楼层。为了对不同楼层进行分类,数据被用作两种常见的计算智能技术(cit)的输入:人工神经网络(ANN)和极限学习机(ELM)。在对两种cit的参数进行优化后,实现了输入和目标之间的良好映射,分类准确率约为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信