Soft error immunity of subthreshold SRAM

M. Hashimoto
{"title":"Soft error immunity of subthreshold SRAM","authors":"M. Hashimoto","doi":"10.1109/ASICON.2013.6811841","DOIUrl":null,"url":null,"abstract":"This paper discusses soft error immunity of subthreshold SRAM presenting neutron- and alpha-induced soft error rates (SER) in 65-nm 10T SRAM over a wide range of supply voltages from 1.0 to 0.3 V. The results show that the neutron-induced SER at 0.3 V is 7.8 times as high as that at 1.0 V. The measured multiple cell upsets (MCUs) included 8-bit MCU. With 0.4V operation of the SRAM under test, protons are not dominant secondary particles causing SEU, but this paper points out that protons must be considered for future near-threshold computing. The alpha-induced SER at 0.3V is 6x higher than that at 1.0V. These results can contribute to reliability estimation and enhancement in subthreshold circuit design.","PeriodicalId":150654,"journal":{"name":"2013 IEEE 10th International Conference on ASIC","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2013.6811841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses soft error immunity of subthreshold SRAM presenting neutron- and alpha-induced soft error rates (SER) in 65-nm 10T SRAM over a wide range of supply voltages from 1.0 to 0.3 V. The results show that the neutron-induced SER at 0.3 V is 7.8 times as high as that at 1.0 V. The measured multiple cell upsets (MCUs) included 8-bit MCU. With 0.4V operation of the SRAM under test, protons are not dominant secondary particles causing SEU, but this paper points out that protons must be considered for future near-threshold computing. The alpha-induced SER at 0.3V is 6x higher than that at 1.0V. These results can contribute to reliability estimation and enhancement in subthreshold circuit design.
亚阈值SRAM的软误差抗扰性
本文讨论了65纳米10T SRAM在1.0 ~ 0.3 V宽电压范围内中子和α诱导软错误率(SER)的亚阈值SRAM的软误差抗扰性。结果表明,0.3 V时中子诱导的SER是1.0 V时的7.8倍。测量的多单元扰流器(MCU)包括8位MCU。在SRAM运行0.4V时,质子并不是导致SEU的主要二次粒子,但本文指出在未来的近阈值计算中必须考虑质子。0.3V时α诱导的SER比1.0V时高6倍。这些结果有助于阈值下电路设计的可靠性估计和提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信