Modelling optical pulse propagation in nonlinear media using wavelets

I. Pierce, L. Watkins
{"title":"Modelling optical pulse propagation in nonlinear media using wavelets","authors":"I. Pierce, L. Watkins","doi":"10.1109/TFSA.1996.547488","DOIUrl":null,"url":null,"abstract":"A wavelet based model for propagation of optical pulses in nonlinear media is presented. We obtain an O(N) algorithm for linear propagation by replacing the wavelet-domain propagation operator by its Taylor series approximation. Nonlinear propagation is then achieved by adding the nonlinear term in mid-step in a method analogous to the split-step Fourier method. Using wavelets offers the advantage of O(N) computational complexity compared with O(N log N) for fast Fourier transform methods. Using a wavelet basis also leads naturally to the time-resolved spectrum of the signal. Another advantage is that the local properties of wavelets will allow locally adaptive algorithms to be implemented.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.547488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A wavelet based model for propagation of optical pulses in nonlinear media is presented. We obtain an O(N) algorithm for linear propagation by replacing the wavelet-domain propagation operator by its Taylor series approximation. Nonlinear propagation is then achieved by adding the nonlinear term in mid-step in a method analogous to the split-step Fourier method. Using wavelets offers the advantage of O(N) computational complexity compared with O(N log N) for fast Fourier transform methods. Using a wavelet basis also leads naturally to the time-resolved spectrum of the signal. Another advantage is that the local properties of wavelets will allow locally adaptive algorithms to be implemented.
用小波模拟光脉冲在非线性介质中的传播
提出了一种基于小波变换的光脉冲在非线性介质中的传播模型。用小波域传播算子的泰勒级数近似代替小波域传播算子,得到了线性传播的O(N)算法。然后用类似于分步傅里叶方法的方法在中间阶中加入非线性项来实现非线性传播。与快速傅里叶变换方法的计算复杂度为O(N log N)相比,使用小波具有O(N)的优点。使用小波基也可以自然地得到信号的时间分辨谱。另一个优点是小波的局部特性将允许实现局部自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信