Handling nominal features in anomaly intrusion detection problems

M. Shyu, Kanoksri Sarinnapakorn, Indika Kuruppu-Appuhamilage, Shu‐Ching Chen, LiWu Chang, T. Goldring
{"title":"Handling nominal features in anomaly intrusion detection problems","authors":"M. Shyu, Kanoksri Sarinnapakorn, Indika Kuruppu-Appuhamilage, Shu‐Ching Chen, LiWu Chang, T. Goldring","doi":"10.1109/RIDE.2005.10","DOIUrl":null,"url":null,"abstract":"Computer network data stream used in intrusion detection usually involve many data types. A common data type is that of symbolic or nominal features. Whether being coded into numerical values or not, nominal features need to be treated differently from numeric features. This paper studies the effectiveness of two approaches in handling nominal features: a simple coding scheme via the use of indicator variables and a scaling method based on multiple correspondence analysis (MCA). In particular, we apply the techniques with two anomaly detection methods: the principal component classifier (PCC) and the Canberra metric. The experiments with KDD 1999 data demonstrate that MCA works better than the indicator variable approach for both detection methods with the PCC coming much ahead of the Canberra metric.","PeriodicalId":404914,"journal":{"name":"15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIDE.2005.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Computer network data stream used in intrusion detection usually involve many data types. A common data type is that of symbolic or nominal features. Whether being coded into numerical values or not, nominal features need to be treated differently from numeric features. This paper studies the effectiveness of two approaches in handling nominal features: a simple coding scheme via the use of indicator variables and a scaling method based on multiple correspondence analysis (MCA). In particular, we apply the techniques with two anomaly detection methods: the principal component classifier (PCC) and the Canberra metric. The experiments with KDD 1999 data demonstrate that MCA works better than the indicator variable approach for both detection methods with the PCC coming much ahead of the Canberra metric.
处理异常入侵检测问题中的标称特征
用于入侵检测的计算机网络数据流通常包含多种数据类型。常见的数据类型是符号或标称特征。无论是否编码为数值,标称特征都需要与数字特征区别对待。本文研究了两种处理标称特征的方法的有效性:利用指标变量的简单编码方案和基于多重对应分析(MCA)的标度方法。特别地,我们将该技术应用于两种异常检测方法:主成分分类器(PCC)和堪培拉度量。KDD 1999数据的实验表明,对于两种检测方法,MCA都比指标变量方法工作得更好,PCC远远领先于堪培拉度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信