{"title":"Stability analysis of cascaded converters for bidirectional power flow applications","authors":"H. Krishnamurthy, R. Ayyanar","doi":"10.1109/INTLEC.2008.4664032","DOIUrl":null,"url":null,"abstract":"This paper establishes the criteria to ensure stable operation of two-stage, bidirectional, isolated AC-DC converters. The bi-directional converter is analyzed in the context of a building block module (BBM) that enables a fully modular architecture for universal power flow conversion applications (AC-DC, DC-AC and DC-DC). The BBM consists of independently controlled AC-DC and isolated DC-DC converters that are cascaded for bidirectional power flow applications. The cascaded converters have different control objectives in different directions of power flow. This paper discusses methods to obtain the appropriate input and output impedances that determine stability in the context of bi-directional AC-DC power conversion. Design procedures to ensure stable operation with minimal interaction between the cascaded stages are presented. The analysis and design methods are validated through extensive simulation and hardware results.","PeriodicalId":431368,"journal":{"name":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2008.4664032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
This paper establishes the criteria to ensure stable operation of two-stage, bidirectional, isolated AC-DC converters. The bi-directional converter is analyzed in the context of a building block module (BBM) that enables a fully modular architecture for universal power flow conversion applications (AC-DC, DC-AC and DC-DC). The BBM consists of independently controlled AC-DC and isolated DC-DC converters that are cascaded for bidirectional power flow applications. The cascaded converters have different control objectives in different directions of power flow. This paper discusses methods to obtain the appropriate input and output impedances that determine stability in the context of bi-directional AC-DC power conversion. Design procedures to ensure stable operation with minimal interaction between the cascaded stages are presented. The analysis and design methods are validated through extensive simulation and hardware results.