Extracting invariant features of the human face from 3D range data

Shoude Chang, M. Rioux, C. Grover
{"title":"Extracting invariant features of the human face from 3D range data","authors":"Shoude Chang, M. Rioux, C. Grover","doi":"10.1117/12.384873","DOIUrl":null,"url":null,"abstract":"The surface of the human face can be represented by a set of facets. The Phase Fourier Transform (PFT) can be used to transform a facet in the space domain to a peak in the frequency domain. The position and the distribution of the peak represent the orientation and shape of the facet respectively. The PFT of the human face provides a new signature of the face. The intensity of the PFT is invariant to the shift and out-of-plane rotation within a certain angle. It is also scale invariant within a certain range. We have used Circular Harmonic m-r filtering to achieve the in- plane partial rotation invariance. The recognition decision is based on the intensity and performance of the correlation peak.","PeriodicalId":354140,"journal":{"name":"Applied Imaging Pattern Recognition","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Imaging Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.384873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The surface of the human face can be represented by a set of facets. The Phase Fourier Transform (PFT) can be used to transform a facet in the space domain to a peak in the frequency domain. The position and the distribution of the peak represent the orientation and shape of the facet respectively. The PFT of the human face provides a new signature of the face. The intensity of the PFT is invariant to the shift and out-of-plane rotation within a certain angle. It is also scale invariant within a certain range. We have used Circular Harmonic m-r filtering to achieve the in- plane partial rotation invariance. The recognition decision is based on the intensity and performance of the correlation peak.
从三维距离数据中提取人脸的不变特征
人脸的表面可以用一组切面来表示。相位傅里叶变换(PFT)可用于将空间域的面变换为频域的峰值。峰的位置和分布分别代表面的方向和形状。人脸的PFT提供了一种新的人脸签名。在一定角度内,PFT的强度与位移和面外旋转是不变的。它在一定范围内也是尺度不变的。我们使用环谐m-r滤波来实现平面内部分旋转不变性。识别决策是基于相关峰的强度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信