Kernel Isomap on Noisy Manifold

Heeyoul Choi, Seungjin Choi
{"title":"Kernel Isomap on Noisy Manifold","authors":"Heeyoul Choi, Seungjin Choi","doi":"10.1109/DEVLRN.2005.1490986","DOIUrl":null,"url":null,"abstract":"In the human brain, it is well known that perception is based on similarity rather than coordinates and it is carried out on the manifold of data set. Isomap (Tenenbaum et al., 2000) is one of widely-used low-dimensional embedding methods where approximate geodesic distance on a weighted graph is used in the framework of classical scaling (metric MDS). In this paper, we consider two critical issues missing in Isomap: (1) generalization property; (2) topological stability and present our robust kernel Isomap method, armed with such two properties. The useful behavior and validity of our robust kernel Isomap, is confirmed through numerical experiments with several data sets including real world data","PeriodicalId":297121,"journal":{"name":"Proceedings. The 4nd International Conference on Development and Learning, 2005.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 4nd International Conference on Development and Learning, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2005.1490986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In the human brain, it is well known that perception is based on similarity rather than coordinates and it is carried out on the manifold of data set. Isomap (Tenenbaum et al., 2000) is one of widely-used low-dimensional embedding methods where approximate geodesic distance on a weighted graph is used in the framework of classical scaling (metric MDS). In this paper, we consider two critical issues missing in Isomap: (1) generalization property; (2) topological stability and present our robust kernel Isomap method, armed with such two properties. The useful behavior and validity of our robust kernel Isomap, is confirmed through numerical experiments with several data sets including real world data
噪声流形上的核等距映射
众所周知,在人脑中,感知是基于相似性而不是坐标的,它是在数据集的流形上进行的。Isomap (Tenenbaum et al., 2000)是一种广泛使用的低维嵌入方法,它在经典尺度(metric MDS)框架中使用加权图上的近似测地线距离。本文考虑了Isomap中缺少的两个关键问题:(1)泛化性质;(2)拓扑稳定性,提出了鲁棒核Isomap方法。通过实际数据集的数值实验,验证了鲁棒核等高图的有效性和实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信