A codebook generation algorithm for document image compression

Qin Zhang, J. Danskin, N. Young
{"title":"A codebook generation algorithm for document image compression","authors":"Qin Zhang, J. Danskin, N. Young","doi":"10.1109/DCC.1997.582053","DOIUrl":null,"url":null,"abstract":"Pattern-matching based document compression systems rely on finding a small set of patterns that can be used to represent all of the ink in the document. Finding an optimal set of patterns is NP-hard; previous compression schemes have resorted to heuristics. We extend the cross-entropy approach, used previously for measuring pattern similarity, to this problem. Using this approach we reduce the problem to the fixed-cost k-median problem, for which we present a new algorithm with a good provable performance guarantee. We test our new algorithm in place of the previous heuristics (First Fit, with and without generalized Lloyd's (k-means) postprocessing steps). The new algorithm generates a better codebook, resulting in an overall improvement in compression performance of almost 17%.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Pattern-matching based document compression systems rely on finding a small set of patterns that can be used to represent all of the ink in the document. Finding an optimal set of patterns is NP-hard; previous compression schemes have resorted to heuristics. We extend the cross-entropy approach, used previously for measuring pattern similarity, to this problem. Using this approach we reduce the problem to the fixed-cost k-median problem, for which we present a new algorithm with a good provable performance guarantee. We test our new algorithm in place of the previous heuristics (First Fit, with and without generalized Lloyd's (k-means) postprocessing steps). The new algorithm generates a better codebook, resulting in an overall improvement in compression performance of almost 17%.
一个用于文档图像压缩的码本生成算法
基于模式匹配的文档压缩系统依赖于找到一小组可用于表示文档中所有墨水的模式。找到一组最优模式是np困难的;以前的压缩方案采用了启发式方法。我们将以前用于测量模式相似性的交叉熵方法扩展到这个问题。利用这种方法,我们将问题简化为固定代价的k-中值问题,并提出了一种具有良好可证明性能保证的新算法。我们测试了我们的新算法,取代了之前的启发式算法(第一次拟合,有和没有广义劳埃德(k-means)后处理步骤)。新算法生成了更好的码本,压缩性能整体提升了近17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信