Exploring univariate mixed polynomials

M. Elkadi, A. Galligo
{"title":"Exploring univariate mixed polynomials","authors":"M. Elkadi, A. Galligo","doi":"10.1145/2631948.2631960","DOIUrl":null,"url":null,"abstract":"We consider mixed polynomials <i>P</i>(<i>z, z</i>) of the single complex variable <i>z</i> with complex (or real coefficients, of degree <i>n</i> in <i>z</i> and <i>m</i> in <i>z</i>. This data is equivalent to a pair of real bivariate polynomials <i>f</i>(<i>x, y</i>) and <i>g</i>(<i>x, y</i>) obtained by separating real and imaginary parts of <i>P</i>. However specifying the degrees, here we focus on the case where <i>m</i> is small allows to investigate interesting roots structures and roots counting; intermediate between complex and real algebra. Mixed polynomials naturally appear in the study of complex polynomial matrices and complex moment problems, harmonic maps, and in recent papers dealing with Milnor fibrations.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider mixed polynomials P(z, z) of the single complex variable z with complex (or real coefficients, of degree n in z and m in z. This data is equivalent to a pair of real bivariate polynomials f(x, y) and g(x, y) obtained by separating real and imaginary parts of P. However specifying the degrees, here we focus on the case where m is small allows to investigate interesting roots structures and roots counting; intermediate between complex and real algebra. Mixed polynomials naturally appear in the study of complex polynomial matrices and complex moment problems, harmonic maps, and in recent papers dealing with Milnor fibrations.
探索单变量混合多项式
我们考虑单复数变量z的混合多项式P(z, z),其复数系数(或实数系数)在z中为n次,在z中为m次。该数据等价于通过分离P的实部和虚部获得的一对实数二元多项式f(x, y)和g(x, y)。然而指定度,这里我们关注m很小的情况,允许研究有趣的根结构和根计数;介于复数代数和实代数之间的。混合多项式自然地出现在复多项式矩阵和复矩问题、调和映射的研究中,以及最近处理米尔诺振动的论文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信