ConSTR: A Contextual Search Term Recommender

Thomas Kramer, Zeljko Carevic, Dwaipayan Roy, Claus-Peter Klas, Philipp Mayr
{"title":"ConSTR: A Contextual Search Term Recommender","authors":"Thomas Kramer, Zeljko Carevic, Dwaipayan Roy, Claus-Peter Klas, Philipp Mayr","doi":"10.1109/JCDL52503.2021.00042","DOIUrl":null,"url":null,"abstract":"In this demo paper, we present ConSTR, a novel Contextual Search Term Recommender that utilises the user's interaction context for search term recommendation and literature retrieval. ConSTR integrates a two-layered recommendation interface: the first layer suggests terms with respect to a user's current search term, and the second layer suggests terms based on the users' previous search activities (interaction context). For the demonstration, ConSTR is built on the arXiv, an academic repository consisting of 1.8 million documents.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this demo paper, we present ConSTR, a novel Contextual Search Term Recommender that utilises the user's interaction context for search term recommendation and literature retrieval. ConSTR integrates a two-layered recommendation interface: the first layer suggests terms with respect to a user's current search term, and the second layer suggests terms based on the users' previous search activities (interaction context). For the demonstration, ConSTR is built on the arXiv, an academic repository consisting of 1.8 million documents.
ConSTR:上下文搜索词推荐器
在这篇演示论文中,我们介绍了ConSTR,一个新颖的上下文搜索词推荐器,它利用用户的交互上下文进行搜索词推荐和文献检索。ConSTR集成了一个两层推荐界面:第一层根据用户当前的搜索词推荐术语,第二层根据用户以前的搜索活动(交互上下文)推荐术语。为了演示,ConSTR建立在arXiv上,arXiv是一个由180万份文档组成的学术存储库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信