{"title":"Loss analysis of hybrid battery-supercapacitor energy storage system in EVs","authors":"X. Xue, S. Raman, Y. Fong, K. Cheng","doi":"10.1109/PESA.2017.8277767","DOIUrl":null,"url":null,"abstract":"In this study, the losses of the hybrid energy storage system (HESS) including super-capacitor (SC) and battery in an electric vehicle (EV) are analyzed. Based on the presented vehicular system structure, the simulation model is proposed. With the controllable super-capacitor current, the operation of an EV with the hybrid battery-supercapacitor energy storage system is simulated under the European urban driving schedule ECE-15 and the losses of the hybrid energy system are computed and analyzed. The simulated results demonstrate that the super-capacitor current can be optimized under various operating conditions to minimize the losses of the hybrid battery-supercapacitor energy storage system in the EV. Thus, this study provides the valuable approach to maximize the operating efficiency of the hybrid battery-supercapacitor energy storage system in EVs.","PeriodicalId":223569,"journal":{"name":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESA.2017.8277767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this study, the losses of the hybrid energy storage system (HESS) including super-capacitor (SC) and battery in an electric vehicle (EV) are analyzed. Based on the presented vehicular system structure, the simulation model is proposed. With the controllable super-capacitor current, the operation of an EV with the hybrid battery-supercapacitor energy storage system is simulated under the European urban driving schedule ECE-15 and the losses of the hybrid energy system are computed and analyzed. The simulated results demonstrate that the super-capacitor current can be optimized under various operating conditions to minimize the losses of the hybrid battery-supercapacitor energy storage system in the EV. Thus, this study provides the valuable approach to maximize the operating efficiency of the hybrid battery-supercapacitor energy storage system in EVs.