Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields

Nicholas C. Landolfi, Daniel C. O’Neill, S. Lall
{"title":"Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields","authors":"Nicholas C. Landolfi, Daniel C. O’Neill, S. Lall","doi":"10.1109/ICIN51074.2021.9385544","DOIUrl":null,"url":null,"abstract":"Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, databased techniques to model their telemetry are high-dimensional, spatial, and unsupervised. Undirected probabilistic graphical models seem natural, but remain unexplored. We discuss one way around the limitation that cloud measurements violate usual assumptions of normality, and give a tractable estimation procedure for a candidate data model. As a preliminary test, we fit the model and use it to detect and localize anomalies in a synthetic environment and for a small-scale software system.","PeriodicalId":347933,"journal":{"name":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIN51074.2021.9385544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Can probabilistic graphical models characterize cloud telemetry? This paper promotes the affirmative view. Cloud systems are large, connected, and dynamic. Consequently, databased techniques to model their telemetry are high-dimensional, spatial, and unsupervised. Undirected probabilistic graphical models seem natural, but remain unexplored. We discuss one way around the limitation that cloud measurements violate usual assumptions of normality, and give a tractable estimation procedure for a candidate data model. As a preliminary test, we fit the model and use it to detect and localize anomalies in a synthetic environment and for a small-scale software system.
基于残差高斯-马尔科夫随机场的云遥测建模
概率图形模型能描述云遥测的特征吗?本文提出了肯定的观点。云系统是大型的、互联的和动态的。因此,基于数据库的遥测建模技术是高维的、空间的和无监督的。无向概率图形模型似乎很自然,但仍未被探索。我们讨论了一种绕过云测量违反通常正态性假设的限制的方法,并给出了一个可处理的候选数据模型估计过程。作为初步测试,我们拟合了该模型,并将其用于检测和定位合成环境和小型软件系统中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信