Solving global two-dimensional routing problems using snell's law and a search

R. Richbourg, N. Rowe, M. Zyda, R. McGhee
{"title":"Solving global two-dimensional routing problems using snell's law and a search","authors":"R. Richbourg, N. Rowe, M. Zyda, R. McGhee","doi":"10.1109/ROBOT.1987.1087800","DOIUrl":null,"url":null,"abstract":"Long-range route planning is an important component in the intelligent control system of an autonomous agent. Most attempts to solve it with map data rely on applying simple search strategies to high-resolution, node-and-link representations of the map. These techniques have several disadvantages including large time and space requirements. We present an alternative which utilizes a more intelligent representation of the problem environment. Topographical features are represented as homogeneous-cost regions, greatly reducing storage requirements. Then, the A* search strategy is applied to a dynamically created graph, constructed according to Snell's law. Testing has shown significant speed improvements over competing techniques.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Long-range route planning is an important component in the intelligent control system of an autonomous agent. Most attempts to solve it with map data rely on applying simple search strategies to high-resolution, node-and-link representations of the map. These techniques have several disadvantages including large time and space requirements. We present an alternative which utilizes a more intelligent representation of the problem environment. Topographical features are represented as homogeneous-cost regions, greatly reducing storage requirements. Then, the A* search strategy is applied to a dynamically created graph, constructed according to Snell's law. Testing has shown significant speed improvements over competing techniques.
利用snell定律和搜索求解全局二维路由问题
远程路径规划是自主智能体智能控制系统的重要组成部分。大多数用地图数据解决这个问题的尝试依赖于对地图的高分辨率、节点和链接表示应用简单的搜索策略。这些技术有几个缺点,包括需要大量的时间和空间。我们提出了一种替代方案,它利用了问题环境的更智能的表示。地形特征被表示为均匀成本区域,大大减少了存储需求。然后,将A*搜索策略应用于根据Snell定律构造的动态创建图。测试表明,与竞争技术相比,速度有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信