Neuro-Fuzzy Ensemble Approach for Microarray Cancer Gene Expression Data Analysis

Zhenyu Wang, Vasile Palade, Yong Xu
{"title":"Neuro-Fuzzy Ensemble Approach for Microarray Cancer Gene Expression Data Analysis","authors":"Zhenyu Wang, Vasile Palade, Yong Xu","doi":"10.1109/ISEFS.2006.251144","DOIUrl":null,"url":null,"abstract":"A neuro-fuzzy ensemble model (NFE) is proposed in this paper for analysing the gene expression data from microarray experiments. The proposed approach was tested on three benchmark cancer gene expression data sets. Experimental results show that our NFE model can be used as an efficient computational tool for microarray data analysis. In addition, compared to some most widely used approaches, neuro-fuzzy (NF)-based models not only supply good classification results, but their behavior can also be explained and interpreted in human understandable terms, which provides the researchers with a better understanding of the data","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

A neuro-fuzzy ensemble model (NFE) is proposed in this paper for analysing the gene expression data from microarray experiments. The proposed approach was tested on three benchmark cancer gene expression data sets. Experimental results show that our NFE model can be used as an efficient computational tool for microarray data analysis. In addition, compared to some most widely used approaches, neuro-fuzzy (NF)-based models not only supply good classification results, but their behavior can also be explained and interpreted in human understandable terms, which provides the researchers with a better understanding of the data
微阵列癌症基因表达数据分析的神经模糊集成方法
本文提出了一种神经模糊集成模型(NFE),用于分析基因芯片实验的基因表达数据。该方法在三个基准癌症基因表达数据集上进行了测试。实验结果表明,NFE模型可以作为微阵列数据分析的有效计算工具。此外,与一些最广泛使用的方法相比,基于神经模糊(NF)的模型不仅提供了良好的分类结果,而且它们的行为也可以用人类可理解的术语来解释和解释,这为研究人员提供了更好的数据理解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信