Online Writer Identification using GMM Based Feature Representation and Writer-Specific Weights

V. Venugopal, S. Sundaram
{"title":"Online Writer Identification using GMM Based Feature Representation and Writer-Specific Weights","authors":"V. Venugopal, S. Sundaram","doi":"10.1109/ICDAR.2019.00124","DOIUrl":null,"url":null,"abstract":"This paper focuses on a method to ascertain the identity of an online handwritten document. The proposed methodology makes use of a set of descriptors that are derived from features obtained in a probabilistic sense. In this regard, we employ a GMM-based feature representation where in each point-based feature vector in the online trace is represented by a vector. Each element of the aforementioned vector quantify the membership to a particular Gaussian in the GMM. A differing aspect is in the proposal of a weighting scheme that measures the influence of each Gaussian of a writer in the probabilistic space. For deriving these weights, we rely on the information obtained from a histogram, by formulating a function of the sum-pooled posterior probabilities obtained across all the enrolled documents in the database. The identification is performed by an ensemble of SVMs where each SVM is modelled for a given writer. The experiments are performed on the publicly available IAM Online handwriting database and the results are competitive with respect to prior works in literature.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on a method to ascertain the identity of an online handwritten document. The proposed methodology makes use of a set of descriptors that are derived from features obtained in a probabilistic sense. In this regard, we employ a GMM-based feature representation where in each point-based feature vector in the online trace is represented by a vector. Each element of the aforementioned vector quantify the membership to a particular Gaussian in the GMM. A differing aspect is in the proposal of a weighting scheme that measures the influence of each Gaussian of a writer in the probabilistic space. For deriving these weights, we rely on the information obtained from a histogram, by formulating a function of the sum-pooled posterior probabilities obtained across all the enrolled documents in the database. The identification is performed by an ensemble of SVMs where each SVM is modelled for a given writer. The experiments are performed on the publicly available IAM Online handwriting database and the results are competitive with respect to prior works in literature.
基于GMM的特征表示和作者特定权重的在线作者识别
本文研究了一种确定在线手写文档身份的方法。所提出的方法利用了一组描述符,这些描述符是从概率意义上获得的特征中派生出来的。在这方面,我们采用基于gmm的特征表示,其中在线轨迹中每个基于点的特征向量由一个向量表示。上述向量的每个元素量化了GMM中特定高斯的隶属度。一个不同的方面是提出了一种加权方案,该方案测量作者在概率空间中的每个高斯分布的影响。为了获得这些权重,我们依赖于从直方图中获得的信息,通过制定数据库中所有登记文档中获得的后验概率之和的函数。识别由支持向量机的集合执行,其中每个支持向量机都为给定的编写器建模。实验是在公开可用的IAM在线手写数据库上进行的,其结果与文献中先前的作品相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信