Heat Loss Analysis of Flamelets in Near-Limit Spread Over Solid Fuel Surfaces

R. Vance, I. Wichman
{"title":"Heat Loss Analysis of Flamelets in Near-Limit Spread Over Solid Fuel Surfaces","authors":"R. Vance, I. Wichman","doi":"10.1115/imece2001/htd-24252","DOIUrl":null,"url":null,"abstract":"\n The profile of a spreading flamelet is analyzed by examining the heat losses to surrounding surfaces. The study addresses the reasons why flamelets have shapes ranging from round hemispherical “caps” to flat “coin-like” discs. A parabolic shape profile is used for the thin flame sheet, which provides both flame length and flame curvature. A third parameter specifies the height of the flame from the surface beneath it. Radiation and conduction heat losses from the flame sheet are calculated for various flame shapes. Overall heat losses as well as heat losses to the surface beneath the flamelet are examined. Some of the heat “losses” are misnamed because they produce the necessary surface decomposition for subsequent gaseous flame fuel vapors. Strictly, then, “losses” do not contribute appreciably to the maintenance of the flame. Physical arguments are made to explain observed flame spread behavior and flame shapes in response to prevailing flow and environmental conditions.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The profile of a spreading flamelet is analyzed by examining the heat losses to surrounding surfaces. The study addresses the reasons why flamelets have shapes ranging from round hemispherical “caps” to flat “coin-like” discs. A parabolic shape profile is used for the thin flame sheet, which provides both flame length and flame curvature. A third parameter specifies the height of the flame from the surface beneath it. Radiation and conduction heat losses from the flame sheet are calculated for various flame shapes. Overall heat losses as well as heat losses to the surface beneath the flamelet are examined. Some of the heat “losses” are misnamed because they produce the necessary surface decomposition for subsequent gaseous flame fuel vapors. Strictly, then, “losses” do not contribute appreciably to the maintenance of the flame. Physical arguments are made to explain observed flame spread behavior and flame shapes in response to prevailing flow and environmental conditions.
火焰在固体燃料表面近极限扩散时的热损失分析
通过检查火焰周围表面的热损失来分析火焰蔓延的轮廓。这项研究解释了为什么小火苗的形状从圆形的半球形“帽”到扁平的“硬币状”圆盘不等。抛物线形轮廓用于薄火焰片,它提供了火焰长度和火焰曲率。第三个参数指定火焰离其下方表面的高度。计算了各种火焰形状下火焰片的辐射和传导热损失。总体热损失以及火焰下表面的热损失进行了检查。一些热“损失”被错误地命名,因为它们为随后的气态火焰燃料蒸汽产生必要的表面分解。因此,严格地说,“损失”对火焰的维持没有显著的贡献。提出了物理论据来解释观察到的火焰传播行为和火焰形状对主流流动和环境条件的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信