{"title":"Learning from high-dimensional noisy data via projections onto multi-dimensional ellipsoids","authors":"Liuling Gong, D. Schonfeld","doi":"10.1109/ICASSP.2010.5495284","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we examine the problem of learning from noise-contaminated data in high-dimensional space. A new learning approach based on projections onto multi-dimensional ellipsoids (POME) is introduced, which is applicable to unsupervised clustering, semi-supervised clustering and classification in high-dimensional noisy data. Unlike the traditional learning techniques, where local information is used for data analysis, the proposed POME-based scheme incorporates a priori information of the data distribution. Experimental results in unsupervised clustering demonstrate the superiority of the proposed POME-based scheme to some well-known clustering algorithms, including the k-means and the hierarchical agglomerative clustering. We also illustrate the effectiveness of our proposed POME-based scheme in semi-supervised learning by simulation.