Using 3D Spline Differentiation to Compute Quantitative Optical Flow

J. Barron, M. Daniel, J. Mari
{"title":"Using 3D Spline Differentiation to Compute Quantitative Optical Flow","authors":"J. Barron, M. Daniel, J. Mari","doi":"10.1109/CRV.2006.84","DOIUrl":null,"url":null,"abstract":"We show that differentiation via fitting B-splines to the spatio-temporal intensity data comprising an image sequence provides at least the same and usually better 2D Lucas and Kanade optical flow than that computed via Simoncelli’s balanced/matched filters.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that differentiation via fitting B-splines to the spatio-temporal intensity data comprising an image sequence provides at least the same and usually better 2D Lucas and Kanade optical flow than that computed via Simoncelli’s balanced/matched filters.
利用三维样条微分法计算定量光流
我们表明,通过将b样条拟合到包含图像序列的时空强度数据上的分化,与通过Simoncelli平衡/匹配滤波器计算的结果相比,至少可以提供相同且通常更好的2D Lucas和Kanade光流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信