{"title":"Polynomial time algorithms for the MIN CUT problem on degree restricted trees","authors":"M. Chung, F. Makedon, I. H. Sudborough, J. Turner","doi":"10.1137/0214013","DOIUrl":null,"url":null,"abstract":"Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d tree can be found in O(n(logn)d-2) steps. This also yields an algorithm for determining the black/white pebble demand of degree three trees. A forbidden subgraph characterization is given for degree three trees having cutwidth k. This yields an interesting corollary: for degree three trees, cutwidth is identical to search number.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0214013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d tree can be found in O(n(logn)d-2) steps. This also yields an algorithm for determining the black/white pebble demand of degree three trees. A forbidden subgraph characterization is given for degree three trees having cutwidth k. This yields an interesting corollary: for degree three trees, cutwidth is identical to search number.