Polynomial time algorithms for the MIN CUT problem on degree restricted trees

M. Chung, F. Makedon, I. H. Sudborough, J. Turner
{"title":"Polynomial time algorithms for the MIN CUT problem on degree restricted trees","authors":"M. Chung, F. Makedon, I. H. Sudborough, J. Turner","doi":"10.1137/0214013","DOIUrl":null,"url":null,"abstract":"Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d tree can be found in O(n(logn)d-2) steps. This also yields an algorithm for determining the black/white pebble demand of degree three trees. A forbidden subgraph characterization is given for degree three trees having cutwidth k. This yields an interesting corollary: for degree three trees, cutwidth is identical to search number.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0214013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d tree can be found in O(n(logn)d-2) steps. This also yields an algorithm for determining the black/white pebble demand of degree three trees. A forbidden subgraph characterization is given for degree three trees having cutwidth k. This yields an interesting corollary: for degree three trees, cutwidth is identical to search number.
度受限树最小切割问题的多项式时间算法
给出了一种求解度受限树上最小割线性排列问题的多项式算法。例如,任意阶d树的切面宽度或折叠数可以在O(n(logn)d-2)步中找到。这也产生了一种确定三度树的黑/白鹅卵石需求的算法。对于具有宽度为k的三阶树,给出了一个禁止子图特征。这产生了一个有趣的推论:对于三阶树,宽度与搜索数相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信