A Fuzzy Variant for On-Demand Data Stream Classification

T. P. D. Silva, G. Urban, P. Lopes, H. Camargo
{"title":"A Fuzzy Variant for On-Demand Data Stream Classification","authors":"T. P. D. Silva, G. Urban, P. Lopes, H. Camargo","doi":"10.1109/BRACIS.2017.60","DOIUrl":null,"url":null,"abstract":"In many real-world applications, data arrive sequentially in the form of streams. Processing such data poses challenges to machine learning. In data streams learning, classification problems aim to predict the true class of incoming instances in real time. While adhering to online learning strategies, in this paper we extend the On-Demand classification algorithm to include concepts of fuzzy sets theory as a way to make classification more flexible to stream changes. A set of experiments was conducted to evaluate the proposed method. Experiments show that our approach is promising in dealing with imbalanced data streams and presents benefits with relation to the non-fuzzy version.","PeriodicalId":202240,"journal":{"name":"2017 Brazilian Conference on Intelligent Systems (BRACIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2017.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In many real-world applications, data arrive sequentially in the form of streams. Processing such data poses challenges to machine learning. In data streams learning, classification problems aim to predict the true class of incoming instances in real time. While adhering to online learning strategies, in this paper we extend the On-Demand classification algorithm to include concepts of fuzzy sets theory as a way to make classification more flexible to stream changes. A set of experiments was conducted to evaluate the proposed method. Experiments show that our approach is promising in dealing with imbalanced data streams and presents benefits with relation to the non-fuzzy version.
按需数据流分类的模糊变体
在许多实际应用程序中,数据以流的形式顺序到达。处理这些数据给机器学习带来了挑战。在数据流学习中,分类问题旨在实时预测传入实例的真实类别。在坚持在线学习策略的同时,本文扩展了按需分类算法,包括模糊集理论的概念,作为一种使分类更灵活地适应流变化的方法。通过一组实验对该方法进行了验证。实验表明,我们的方法在处理不平衡数据流方面是有希望的,并且与非模糊版本相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信