Early Prediction of Electronics Engineering Licensure Examination Performance using Random Forest

R. R. Maaliw
{"title":"Early Prediction of Electronics Engineering Licensure Examination Performance using Random Forest","authors":"R. R. Maaliw","doi":"10.1109/AIIoT52608.2021.9454213","DOIUrl":null,"url":null,"abstract":"Graduate's success on licensure examinations has a significant impact on various facets of a higher educational institution. Using a comprehensive data mining process, this research compared the accuracy of multiple classification algorithms to determine predictors of students' professional certification performance. The Random Forest model achieved the best cross-validated accuracy score of 92.70% based on the evaluation data. A model inspection method of permutation feature importance was used to uncover information from 500 graduates of Southern Luzon State University's electronics engineering program from 2014 to 2019. Among the 33 variables examined, the verbal reasoning or reading comprehension ability of students unveils a clear attribution with their licensure test results along with ratings from different courses in mathematics, professional, and electrical circuits. Thus, the data-driven information can be used to develop programs, initiatives, and techniques to improve success on the electronics engineering licensure examinations.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Graduate's success on licensure examinations has a significant impact on various facets of a higher educational institution. Using a comprehensive data mining process, this research compared the accuracy of multiple classification algorithms to determine predictors of students' professional certification performance. The Random Forest model achieved the best cross-validated accuracy score of 92.70% based on the evaluation data. A model inspection method of permutation feature importance was used to uncover information from 500 graduates of Southern Luzon State University's electronics engineering program from 2014 to 2019. Among the 33 variables examined, the verbal reasoning or reading comprehension ability of students unveils a clear attribution with their licensure test results along with ratings from different courses in mathematics, professional, and electrical circuits. Thus, the data-driven information can be used to develop programs, initiatives, and techniques to improve success on the electronics engineering licensure examinations.
基于随机森林的电子工程执照考试成绩早期预测
毕业生在执照考试中的成功对高等教育机构的各个方面都有重大影响。本研究采用全面的数据挖掘过程,比较了多种分类算法的准确性,以确定学生专业认证绩效的预测因子。基于评价数据,随机森林模型的交叉验证准确率得分最高,为92.70%。采用排列特征重要性的模型检验方法,对2014年至2019年南吕宋州立大学电子工程专业500名毕业生的信息进行了分析。在测试的33个变量中,学生的语言推理或阅读理解能力与他们的执照考试成绩以及数学、专业和电路等不同课程的评分有明显的关系。因此,数据驱动的信息可用于开发程序,倡议和技术,以提高在电子工程执照考试中的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信