{"title":"Different Scheduling Options in YARN","authors":"Sajal Tyagi, Shipra Saraswat","doi":"10.1109/ICMETE.2016.52","DOIUrl":null,"url":null,"abstract":"Today's world, it is critical to manage huge information as the volume of digital information is increasing day by day. The popular handling system like Hadoop to process information proficiently and utilize such planning calculations accurately in brisk time. The Map Reduce structure has turned into the genuine plan for versatile half organized and not organized information handling lately. The Hadoop environment has developed into the next era, which embraces exquisite asset administration plans for occupation booking. It is a framework for reducing the overall length while doing mapping of jobs. As the time has passed MapReduce has achieved few of its impediments with its various pluggable schedulers. So with a specific end goal to conquer the constraints of MapReduce, the upcoming era of MapReduce has been created called as YARN (Yet Another Resource Negotiator). This paper presents various pluggable schedulers that can be configured in a Hadoop cluster along with their implementation and further discussing recently developed scheduling techniques with a brief prologue to YARN.","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Today's world, it is critical to manage huge information as the volume of digital information is increasing day by day. The popular handling system like Hadoop to process information proficiently and utilize such planning calculations accurately in brisk time. The Map Reduce structure has turned into the genuine plan for versatile half organized and not organized information handling lately. The Hadoop environment has developed into the next era, which embraces exquisite asset administration plans for occupation booking. It is a framework for reducing the overall length while doing mapping of jobs. As the time has passed MapReduce has achieved few of its impediments with its various pluggable schedulers. So with a specific end goal to conquer the constraints of MapReduce, the upcoming era of MapReduce has been created called as YARN (Yet Another Resource Negotiator). This paper presents various pluggable schedulers that can be configured in a Hadoop cluster along with their implementation and further discussing recently developed scheduling techniques with a brief prologue to YARN.